matlab一元线性回归函数曲线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:55:59
这下通了,都是小问题:x1=[100101.9108.2104.01102.6103.6];x2=[174162.6233.8257322.4373.1];y=[88.9283.791.13127.2
x=[100101.9108.2104.01102.6103.6];y=[174162.6233.8257322.4373.1];z=[88.9283.791.13127.24141.11150.37
使用regress命令多元线性回归——用最小二乘估计法B=REGRESS(Y,X),返回值为线性模型Y=X*B的回归系数向量X,n-by-p矩阵,行对应于观测值,列对应于预测变量Y,n-by-1向量,
6再问:6?怎么算的。。为什么我算的是-6再答:呃……抱歉少打了个负号再问:哦哦,肯定不?再问:我开学得去考试呢。。再答:平均值过符合线性方程再答:确定再答:你考什么试再问:好的,谢谢你再问:概率论
相关分析表(Correlations)表明两个变量的线性相关性较强(r=0.601)较显著(p=0.000):提示两个变量之间在较大的程度上可以进行直线回归.Modelsummary表显示线性回归的决
用polyfit函数;k=polyfit(x,y,1);A=k(1);B=k(2);再问:能把整个的写出来么不会用的着急啦再答:x=[-0.125,-0.300,-0.602,-0.824];y=[-
我用origin给你拟合了一下,不是一次的,是二次的.以下是拟合结果:[2006-6-1209:15"/Graph1"(2453898)]PolynomialRegressionforData1_B:
你x10个值,y11个值,而且591.0也有误吧r=corrcoef(x,y);%r就是相关系数R=r^2;k=polyfit(x,y,1);scatter(x,y,'.');holdonx1=200
在MATLAB里,多项式由一个系数的行向量表示,其系数是按降序排列.所以:A=-0.2444B=0.6064
clear>>x=[1656,2122,2864,4033,6099];>>y=[2112,2170,2291,2456,2759];>>[P,S]=polyfit(x,y,1)%P为拟合回归系数即y
esult=polyfit(x,y,1)A,B在result中可查看matlabhelppolyfit.
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
X=[ones(9,1)xx.^2];就可以了.得到b的三个值分别是常数项、一次项系数、二次项系数
y=[320320160710320320320160710320];x1=[2.31.71.31.71.71.611.71.71.7];x2=[2.31.71.71.61.71.711.71.71.
令线性回归方程为:y=ax+b(1)a,b为回归系数,要用观测数据(x1,x2,...,xn和y1,y2,...,yn)确定之.为此构造Q(a,b)=Σ(i=1->n)[yi-(axi+b)]^2(2
首先你的X和Y两个矩阵的维数不一样,这样的话算出来的结果就可能有问题.第二假如一组数据的值就是这样的话,你就算用其他的软件去求还是这样,其实要检验b的取值是否合理其实有个办法很简单,就是你可以用上面已
a=[320320160710320320320];f=[0.180.180.180.180.090.360.18];v=[2.31.71.71.71.71.71];F=[38.829.2326.53
http://hi.baidu.com/zhangkai1201/blog/item/c2bf22039bf73983d53f7c64.html
步骤: 1.列计算表,求∑x,∑xx,∑y,∑yy,∑xy. 2.计算Lxx,Lyy,Lxy Lxx=∑(x-xˇ)(x-xˇ) Lyy=∑(y-yˇ)(y-yˇ) Lxy=∑(x-xˇ)(
改了4处,程序通了,见程序批注.function[x,y]=DataRegress1xx=[2.382.442.702.983.323.122.142.863.503.202.782.702.362.