考研 概率论 X服从均匀分布 Y服从系数为一1的指数分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:13:53
这个只是一种简便写法.其实可以看到,如果x>y,那么(1/2)(x+y-|x-y|)=(1/2)[x+y-(x-y)]=y如果x
密度函数为f(x)={1/4(2
由随机变量X服从区间[0,5]上的均匀分布,得出E(X)=5/2 由Y服从参数为3的指数分布,得出E(Y)=3 由X与Y相互独立,知E(XY)=E(X)×E(Y)=15/2再问:5/2的/是乘的意
我把解答写在图片里面,请参考图片
正态分布线性函数依然服从正态分布 记住啦
均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/
1.f(x,y)=1/8,0≤x≤2,0≤y≤4;=0,其它.0≤x≤2,0≤y≤4.非零定义域是一个矩形.(X>Y)是矩形中的下三角形,面积为总面积的1/4.所以,P(X>Y)=1/4.2.f(x)
F(X)=(X-0)/(1-0)=x/1=xF(Y)=(Y-0)/(1-0)=y/1=y以上是两个均匀分布的分布函数F(Z)=F(MAX(X,Y))=1-(1-F(X))(1-F(Y))=1-(1-X
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
既然是均匀分布,可以利用几何概型的方法所以,所求的概率为:P(x>2)=(4-2)/(4-1)=2/3再问:麻烦看下私信,谢谢!再答:哦,好的。
设z=xyf(z)=f(z|x)f(x)=f(y|x)f(x)得证第二步应该是x已知为常数,所以分布密度.
选AA选项:既然xy相互独立且均匀分布,那么(x,y)也服从区域[0,1]的均匀分布就好比你用铅笔在[0,1]这条直线上随意划点和你在边长为1的正方形内随意划点,他们都是均匀分布的B选项明显不对,当x
Fz(z)=P(Z再问:fu(u)=fx(u-y)*fy(y)然后怎么求呢?再答:卷积是fu(u)=∫fx(u-y)*fy(y)dy才对吧。算出卷积之后就是u=x+y的密度函数fu(u)了呀。你要是不
可以计算出D的面积为1/2所以(X,Y)的密度函数为f(x,y)=2(x,y)∈D而P(X+Y=y.0
A和B是独立的,所以A发生与否和B没有直接关系,P{AUB}表示{Xa}发生的概率.只有当B事件改为B={X>a}时,AUB才为整体,P{AUB}=1.
在这里D={(x,y)|0
既然是均匀分布,用D1的面积占D的面积的比例更简单,一看就知道答案是1/2再问:请教,这个积分解的过程是什么,我解出来总是带x,答案是含有y的一个值再答:常数的积分是这个常数值乘以区间长度,也就是4*
回答:姑且认为D={y>0,x>0,y0,y>0,y