绝对收敛 发散 选择题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:38:20
这里:an=sin[npi+1/ln(n)]=[(-1)^n]*sin[1/ln(n)]知级数为交错级数.当n趋于无穷大时,1/ln(n)趋于0,因而sin[1/ln(n)]趋于0.又:sin[1/l
发散.∑|(-1)^n+1*n!/2n^2|=∑n!/2n^2,lim(n→∞)U(n+1)/Un=lim(n→∞)n^2/(n+1)=+∞,所以原级数发散.
考虑an=2^(n^2)/n!a1=2/1=2an+1/an=2^((n+1)^2)/(n+1)!/[2^(n^2))/n!]=2^[(n+1)^2-n^2]/(n+1)=2^(2n+1)/(n+1)
再问:再答:积分不会?再问:这样做对不对啊再答:再问:再问:哥们儿,在不在啊,这个感应电动势方向是怎么判定啊再答:哈哈3年没看了你让我怎么答再问:那为啥你高数都会嘞再答:我学数学的啊再问:果然叼,给跪
收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c
利用交错级数的莱布尼茨判别法,对于交错级数∑(-1)^nUn,若{Un}单调下降趋于0,则级数收敛令Un=lnn/(n^p)(1)当p≤0时,可知|(-1)^nUn|不趋于0,所以级数发散(2)当p>
极限绝对值的那个东西除以n分之一为无穷大,下面发散所以上面发散.然后用莱布尼兹可求原级数收敛,故为条件收敛
1.(1)因为|(-1)^n/(2n+3)|=1/(2n+3)>1/(2n+n)=1/3n,而∑1/3n发散,由比较判别法知∑|(-1)^n/(2n+3)|发散;(2)而1/(2n+3)单调递减且li
一般步骤是先判断是否绝对收敛,若否,则判断是否条件收敛.再答:再答:看到你对我的提问了。。。但是抱歉呀,我们多重、多元问题都没学,所以不能帮你了😳再问:那还是这类型的问题呢?再答:那也
条件收敛收敛K>1发散再问:亲,你确定不?
因为sinn=n-n^3/3!+aa是高阶无从小.那么级数sin/n=1-n^2/3!,由于1-n^2/3!当n->无从时不趋于零.所以原级数发散.
判断一个级数的收敛性时首先看它是否绝对收敛(特别是交错级数),若绝对收敛则原级数收敛,否则…你的判断顺利正确.判断绝对收敛的方法:将原级数加上绝对值,再根据其级数特点用相应的方法(如比较法,比值法,根
∑(-1)^n[1-cos(1/n)]对应的正项级数∑[1-cos(1/n)]=∑2{sin[1/(2n)]}^2后者收敛,则原级数绝对收敛.
条件收敛再答:再答:请采纳吧
2.|An|≤1/n^2级数1/n^2收敛,原级数绝对收敛3.|A(n+1)/An|=2/(1+1/n)^n趋于2/e
{an}是莱布尼茨交错级数,故收敛1/(n+根号n)>1/(n+n)=1/2n,因为{1/2n}发散,所以{│an│}也发散因此,{an}条件收敛