给出多个等价关系对应的等价类 如何得出等价关系的并集的等价类
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 06:14:33
等价关系R={
所有等价关系:{}{}{}{,}{,}{,}{,,,}{,,,}{,,,}{,,}{,,,,}{,,,,}{,,,,}{,,,,,,,,}
集合上每个等价关系对应集合的一种划分,集合的每一种划分又对应于该集合的一个等价关系,不同的等价关系对应于集合的划分也不同,因此集合有多少不同划分,就有多少不同等价关系,三个元素的集合共有5种不同划分,
同型矩阵等价的充要条件是秩相等向量组等价需互相线性表示,充要条件是R(A)=R(A,B)=R(B)
A经过一系列初等变换等到B,称A与B等价,也就是存在可逆阵PQ使B=PAQ,那么AB秩相等.而AB相似是存在可逆阵P使B=P-1AP,由此可见相似的结论强于等价,具有的性质更多了.比如特征值相同,行列
记s∈P(A)在P(A)/R中的等价类为sR.设s0=空集,s(i)={1,2,..,i},i=1,2,...,4.则P(A)/R={s(i)R|i=0,1,...,4}.证明:注意到: |s(i)|
行列向量组等价没有直接关系它们的秩相等,但不一定可互推等价A,B的向量组等价,向量组是给定的,给的是列向量就是列等价图片中的结论都正确
含有4个元素的集合,可以构成15个等价关系等价关系与集合划分是一一对应的划分的子集对应于等价关系的等价集划分成一个等价集(1个等价关系):{a,b,c,d}划分成两个等价集(7个等价关系):{a,b,
a与b属于同一个等价类(a,b)∈R.所以1,5等价,2,3,6等价,4与4等价.所以等价类是[1]=[5]={1,5},[2]=[3]=[6]={2,3,6},[4]={4}.
sinx~xtanx~x1-cosx~x^2/2secx-1~x^2/2ln(1+x)~xe^x-1~x(1+x)^a~ax(a不等于0)arcsinx~xarctanx~x
在一个集合定义一个等价关系相当于把这个集合划分成许多子集的集.(这里假如不懂请追问)于是求等价关系的数目,就是求划分的数目.这其实是个定理,这个数叫Bell数.Bell数没有通项公式,但我们有一个递推
集合A上的等价关系与集合A的划分是一一对应的,集合的划分就是把集合分解为几个不相交的非空子集的并集.n=1时,只有一个划分;n=2时,一个划分块的情形有1个,2个划分块的有1个,共2种划分;n=3时,
不好比你参考:矩阵A,B行等价的充要条件是存在可逆矩阵P满足PA=B矩阵A,B列等价的充要条件是存在可逆矩阵P满足AP=B再问:矩阵A,B行等价,那么A和B的行向量等价应该是对的吧,那么反过来A,B是
lz想要表达的是什么意思?理想就是环的某个含有特殊性质的子集.这个性质就是定义中所谓的任意子集中的元素与环的元素的乘法运算还是属于子集.有点吸收的意思.其他么,整数环是一个主理想整环(PID).还有就
对的,这里不是优先级的问题,而是5k-1/3k>0说明(5k-1)和3k同号,且分母k≠0,所以他和(5k-1)*3k>0,k不等于0等价
是等价的.一个矩阵经过若干次初等变换得到的矩阵都与这个矩阵等价,这是根据等价的定义得到的.再问:那么任意的两个等价的矩阵,是不是只有它们的秩是一直相等的,其他的(比如说行列式什么的)都不能保证一直相等
两个矩阵A,B等价就是说A可经过有限次初等变换变成B,这就等价于下面的说法:1.A与B同型;2.r(A)=r(B)向量组(α1,……,αm)与(β1,……,βn)等价表示,两个向量组可以相互表出若设A
应该是α={X;X~a},这个集合不是a,应该是拉丁字母α,代表了所有与a等价元素的集合
矩阵等价的前提是两个矩阵同型,即行数与列数相等所以.再问:没有啊。。再问:书上这样写的?再答:不用写,从矩阵等价的定义就可看出再问:木有。。没有这个规定再问:只要求秩一样再答:矩阵等价是一个矩阵可由初
等价关系有对称、传递和自反所以只要证明自反性就可以对于a∈A,存在b∈A,使在R中由对称性也在R中再由传递性在R中,于是自反性成立