给信号加上一个均值为0,方差为2的高斯白噪
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:03:28
令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y
这应该是区间估计问题,由于总体方差是已知的,同时又是大样本,可参照单个样本平均数的u检验法来进行估计.但题目中没有置信度,无法代你计算.
对于θ,如果E(θ^)=θ,则θ^为θ的无偏估计.而样本均值可以认为是总体均值的无偏估计,即E(Xˉ)=E(X)=μ而样本方差可以认为是总体方差的无偏估计,即E(S^2)=D(X)=σ^2所以这个题就
分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-
真正的|X-Y|的方差要比这样算的小很多...定义I{x>y}=1如果x>y;否则为0I{x
mvnrnd(0,1,100)0为均值,1为方差,100为数据长度
选DX拔=0,所以A、B错C由单正态总体的抽样分布定理得X拔/(S/根号n)~t(n-1),C错D中把n-1移到分母里面,得到分子是自由度为1的卡方分布,分母是自由度为n-1的卡方分布,满足F分布的定
均值为0,方差为50.高斯噪声是概率密度函数服从高斯分布(即正态分布)的一类噪声,其功率为信号的方差,均值为0.
对于标准正态分布的取样,样本均值的期望就是0,样本方差的期望有两种理一种是样本内方差的期望,也就是标准差,是1一种是样本间方差的期望,标准误,公式为:s.e.=s.d./根号n对于本题,s.d.(标准
normrnd(1,2^.5,9,10)产生9行10列以1为均值根号2为标准差的随机数,满足正态分布
可以使用如下的函数实现R=normrnd(MU,SIGMA) (生成均值为MU,标准差为SIGMA的正态随机数)R=normrnd(MU,SIGMA,m) (生成1×m个正态随机数)R=normrnd
样本均值的方差等于总体方差除样本数20.总体方差=参数10
y=randn(1,2500);y=y/std(y);y=y-mean(y);a=0;b=sqrt(5);y=a+b*y;就得到了N(0,5)的高斯分布序列.MATLAB中产生高斯白噪声的两个函数MA
我只知道1-1=0
1楼的回答正确,将误差的均值进入常数项调整就行,将原式化为yi=a+Bxi+(εi-u),括号内期望为0,方差σ^2,将u提到常数项处,就得yi=(a-u)+Bxi+εi再问:新式子里的的εi跟之前的
X和Y相互独立,都服从均值为0,方差为0.5的正态分布,则由性质可得到:X-Y也是一正态分布.这点高数书上有.由均值的性质可以得到X-Y的均值=X的均值-Y的均值,故X-Y的均值为0由方差的性质可以得
是randntemp=randn(1000,1);
andn(m,n)产生标准差为1,均值为0大小为mxn的矩阵如果要差生序列,那么将m或n设为1就形了根据正态分布的特性,A*rand(m,n)+B,就能产生标准差为A,均值B的随机矩阵根据你的要求a=
假设用x(t)表示白噪声,0均值是指:E(x(t))=0,也就是随机变量的数学期望为0.从你的问题可以看出,这里的高斯白噪声应该一个多维的随机变量.对于任何一个白噪声,都可以进行0均值化处理.