绘制球面X^2 Y^2 Z^2=R^2的下半部分的下侧的图形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:55:32
1.x^2/4+y^2/9+z^2/16=1可以用三角替换,变成参数方程然后直接plot就好了2,?什么意思?画图的话,R=5;J=0:0.02:5;U=R*J;plot(J,U)
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
内接长方体的对角线长为球的内径即a^2+b^2+c^2=(2R)^2长方体的体积为abc利用公式a^2+b^2+c^2〉=3abc也就是说当a=b=c时,abc存在最大值为(a^2+b^2+c^2)/
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
用matlab再问:具体怎么操作呢?再答:[x,y]=meshgrid(linspace(0:0.01:1));z=(x.^2+y.^2);mesh(x,y,z)
令P=xy²,Q=yz²,R=zx²∵αP/αx=y²,αQ/αy=z²,αR/αz=x²∴由高斯公式,得原式=∫∫∫(αP/αx+αQ/α
ezmesh('sqrt(4-x^2-y^2)')
可以用球面坐标变换去做:下面过程中a=(根号5)*r设x=acosp,y=asinpcosq,z=asinpsinq,p,q的范围是[0,Pi/2]则f=a^3cosp(sinp)^4cosq(sin
Jz=a∫(r,-r)(r^2-y^2)dy=4ar^3/3
x=0:0.1:100;y=0:0.1:100;z=x^2+y^2;plot3(x,y,z)
这个图是一个四维图像,xyzw.用二维平面和三维立体都不好画.建议第四维可以用颜色表示.
过点M(1,1,-3)垂直于平面x+2y+2z+3=0的直线方程为x=t+1,y=2t+1,z=2t-3,球心在该直线上,且球心到点M的距离=3,所以t=1,或-1.所以球心坐标为(2,3,-1)或(
区域Ω关于坐标面都对称,而被积函数中的x是奇函数所以积分值=0再问:区域Ω在第一卦象,忘了打进去了。所以答案不是零再答:再问:答案是πe(e^15-1)/16,我理解了。出错的地方在于的ψ取值范围为[
x=-10:10;y=-10:10;[x,y]=meshgrid(x,y);z=x^2+y^2;surf(x,y,z)
流量是速度乘以面积嘛,所以把速度场沿球面积分就好啦
由对称性,只需计算xy平面上方部分的体积然后乘以2即可.记D={(x,y):x^2+y^2
x²+y²+z²=zx²+y²+(z-1/2)²=(1/2)⁵-->r=cosφ∫∫∫√(x²+y²+z
[X,Y,Z]=sphere(50);mesh(8*X,8*Y,8*Z)%画球面holdon;ezmesh('0-y',[-88])%画平面[x,y,z]=meshgrid(linspace(-8,8