log以8为底2的对数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:22:31
log2(25)*log3(1/16)*log5(1/9)=[2log2(5)]*[-4log3(2)]*[-2log5(3)=[2*lg5/lg2]*[-4*lg2/lg3]*[-2*lg3/lg5
即lg4/lg3*lg8/lg4*lgm/lg8=lg16/lg4lgm/lg3=2lg4/lg4=2lgm=2lg3=lg3²所以m=9
[log9(4)+log3(8)]/log1/3(16)=[lg4/lg9+lg8/lg3]/[lg16/lg1/3]=[2lg2/2lg3+3lg2/lg3]/[4lg2/(-lg3)]=4lg2/
简单log8(9)=log以2的3次方为底3的2次方的对数=3分之1乘2log以2为底3的对数所以原式=3分之2log2(3)除以log2(3)=3分之2
log以4为底8的对数-log以9分之1为底3的对数-log以根号2为底4的对数=lg8/lg4-lg3/lg(1/9)-lg4/lg(√2)=3lg2/2lg2-lg3/(-2)lg3-2lg2/(
=(lg3/lg4+;g3/lg8)(lg2/lg3+lg2/lg9)=(lg3/2lg2+;g3/3lg2)(lg2/lg3+lg2/2lg3)=(1/2+1/3)*lg3/lg2*(1+1/2)*
用换底公式log(8)9/log(2)3=(lg9/lg8)/(lg3/lg2)=(2lg3/3lg2)/(lg3/lg2)=(2lg3*lg2)/(3lg2*lg3)=2/3
log以3为底2的对数log以2为底3的对数>log以2为底2的对数=1>log以3为底2的对数
log2(25)*log3(4)*log5(9)=lg25/lg2*lg4/lg3*lg9/lg5(换底公式)=lg5^2/lg2*lg2^2/lg3*lg3^2/lg5=2lg5/lg2*2lg2/
8再问:是不是换成分数形式可以互相约掉再答:log2(25)*log3(4)*log5(9)=lg25*lg4*lg9/lg2*lg3*lg4=log2(4)*log3(9)*log5(25)=2*2
log2(25)*log3(4)*log5(9)=lg25/lg2*lg4/lg3*lg9/lg5(换底公式)=lg5^2/lg2*lg2^2/lg3*lg3^2/lg5=2lg5/lg2*2lg2/
楼上写错了[log(3,2)+log(9,2)]*[log(4,3)+log(8.3)]=[log(3,2)+1/2log(3,2)]*[1/2log(2,3)+1/3log(2,3)]=3/2log
具体过程都在这儿了,自己看吧!
换底公式原式=(lg3/lg4+lg3/lg8)(lg2/lg3+lg2/lg9)=(lg3/2lg2+lg3/3lg2)(lg2/lg3+lg2/2lg3)=(lg3/lg2)(1/2+1/3)*(
1/2log4(8)-log4(√2)=log4(√8)-log4(√2)=log4(√8/√2)=log4(√4)=1/2
解题思路:本题柱考察学生对于对数的运算的理解和应用。解题过程:
2log3(2)-log3(32/9)+log3(8)-5*2*log5(3)=log3(4)-log3(32/9)+log3(8)-5*2*log5(3)=log3(4/(32/9))+log3(8