log以4为底8的对数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 18:56:03
log以4为底8的对数
设log以3为底4的对数*log以4为底8的对数*log以8为底m的对数=log以4为底16的对数,那么m为

即lg4/lg3*lg8/lg4*lgm/lg8=lg16/lg4lgm/lg3=2lg4/lg4=2lgm=2lg3=lg3²所以m=9

log以9为底4的对数+ log以3为底8的对数除以log以1/3为底16的对数

[log9(4)+log3(8)]/log1/3(16)=[lg4/lg9+lg8/lg3]/[lg16/lg1/3]=[2lg2/2lg3+3lg2/lg3]/[4lg2/(-lg3)]=4lg2/

﹙log以2为底5的对数+log以4为底125的对数﹚乘以﹙log以3为底2的对数/log以根号3为底的5的对数﹚

为了书写方便,不妨记以a为底b的对数为:log【a】b(log【2】5+log【4】125)×[(log【3】2)/(log【√3】5)]=[(lg5)/(lg2)+(lg125)/(lg4)]×{[

log以4为底8的对数-log以9分之1为底3的对数-log以根号2为底4的对数

log以4为底8的对数-log以9分之1为底3的对数-log以根号2为底4的对数=lg8/lg4-lg3/lg(1/9)-lg4/lg(√2)=3lg2/2lg2-lg3/(-2)lg3-2lg2/(

化简(log以4为底3的对数+log以8为底3的对数)乘(log以3为底2的对数+log以9为底2的对数)

=(lg3/lg4+;g3/lg8)(lg2/lg3+lg2/lg9)=(lg3/2lg2+;g3/3lg2)(lg2/lg3+lg2/2lg3)=(1/2+1/3)*lg3/lg2*(1+1/2)*

log以2为底25的对数乘以log以3为底4的对数乘以log以5为底9的对数

log2(25)*log3(4)*log5(9)=lg25/lg2*lg4/lg3*lg9/lg5(换底公式)=lg5^2/lg2*lg2^2/lg3*lg3^2/lg5=2lg5/lg2*2lg2/

log以2为底25的对数乘log以3为底4的对数乘log以5为底9的对数=?

8再问:是不是换成分数形式可以互相约掉再答:log2(25)*log3(4)*log5(9)=lg25*lg4*lg9/lg2*lg3*lg4=log2(4)*log3(9)*log5(25)=2*2

log以2为底25的对数+log以3为底4的对数+log以5为底9的对数

log2(25)*log3(4)*log5(9)=lg25/lg2*lg4/lg3*lg9/lg5(换底公式)=lg5^2/lg2*lg2^2/lg3*lg3^2/lg5=2lg5/lg2*2lg2/

(log以4为底3的对数+log以8为底3的对数)×lg2/lg3

换底公式原式=(lg3/lg4+lg3/lg8)×lg2/lg3=(lg3/2lg2+lg3/3lg2)×lg2/lg3=(1/2+1/3)×lg3/lg2×lg2/lg3=5/6

log以3为底2的对数+log以9为底2的对数的和,乘以,log以4为底3的对数+log 以8为底3的对数的和,的积

楼上写错了[log(3,2)+log(9,2)]*[log(4,3)+log(8.3)]=[log(3,2)+1/2log(3,2)]*[1/2log(2,3)+1/3log(2,3)]=3/2log

(log以4为底3的对数+log以8为底3的对数)*(log以3为底2的对数+log以9为底2的对数)

换底公式原式=(lg3/lg4+lg3/lg8)(lg2/lg3+lg2/lg9)=(lg3/2lg2+lg3/3lg2)(lg2/lg3+lg2/2lg3)=(lg3/lg2)(1/2+1/3)*(

log以3为底的4的对数/log以9为底的8的对数=?

log以3为底的4的对数/log以9为底的8的对数=log以3为底的2^2的对数/log以3^2为底的2^3的对数=log3(2^2)/log3^2(2^3)=4/3再问:最后一步在详细点再答:log

1/2log以4为底8的对数-log以4为底√2对数=多少

1/2log4(8)-log4(√2)=log4(√8)-log4(√2)=log4(√8/√2)=log4(√4)=1/2

计算:(log以4为底3的对数+log以8为底3的对数)(log以3为底2的对数+log以9为底2的对数)- log以½

解题思路:本题柱考察学生对于对数的运算的理解和应用。解题过程:

2log以3为底2的对数-log以3为底32/9的对数+log以3为底8的对数-5的2倍log以5为底3的对数 =多少?

2log3(2)-log3(32/9)+log3(8)-5*2*log5(3)=log3(4)-log3(32/9)+log3(8)-5*2*log5(3)=log3(4/(32/9))+log3(8