log以3为底的4乘以log以4为底的8乘以log以8为底的M

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:04:55
log以3为底的4乘以log以4为底的8乘以log以8为底的M
log以2为底的(log以3为底的(log以4为底的x))=log以3为底的(log以4为底的(log以2为底的y))=

log2(log3(log4x)=0(log3(log4x)=2^0=1log4x=3^1=3x=4^3=64log3(log4(log2y)=0log4(log2y)=3^0=1log2y=4^1=

设log以3为底4的对数,乘以log以8为底M的对数,等于log以4为底16的对数,那么M等于多少?

D首先化减:log8(M)*log3(4)=log4(16)=2log8(M)=2/log3(4)=log3(9)/log3(4)运用换底公式log3(9)/log3(4)=log4(9)所以log8

log以9为底4的对数+ log以3为底8的对数除以log以1/3为底16的对数

[log9(4)+log3(8)]/log1/3(16)=[lg4/lg9+lg8/lg3]/[lg16/lg1/3]=[2lg2/2lg3+3lg2/lg3]/[4lg2/(-lg3)]=4lg2/

log以2为底3的对数乘以log以81为底61的对数得多少?

是64log以2为底3的对数乘以log以81为底64的对数=lg3/lg2*(lg64/lg81)=lg3/lg2*(6/4lg2/lg3)=3/2

﹙log以2为底5的对数+log以4为底125的对数﹚乘以﹙log以3为底2的对数/log以根号3为底的5的对数﹚

为了书写方便,不妨记以a为底b的对数为:log【a】b(log【2】5+log【4】125)×[(log【3】2)/(log【√3】5)]=[(lg5)/(lg2)+(lg125)/(lg4)]×{[

log以4为底8的对数-log以9分之1为底3的对数-log以根号2为底4的对数

log以4为底8的对数-log以9分之1为底3的对数-log以根号2为底4的对数=lg8/lg4-lg3/lg(1/9)-lg4/lg(√2)=3lg2/2lg2-lg3/(-2)lg3-2lg2/(

log以4为底(x+12)的对数乘以log以x为底2的对数等于

log以4为底(x+12)的对数乘以log以x为底2的对数=【ln(x+12)/ln4】×【ln2/lnx】=ln(x+12)/lnx=ln(x+12-x)其中x+12-x>0,即-3<x<4

9乘以log以3为底5的对数

9乘以log以3为底5的对数=9×[(log5)÷(log3)]=9×[0.69897000433601880478626110527551÷0.477121254719662437295027903

log以2为底25的对数乘以log以3为底4的对数乘以log以5为底9的对数

log2(25)*log3(4)*log5(9)=lg25/lg2*lg4/lg3*lg9/lg5(换底公式)=lg5^2/lg2*lg2^2/lg3*lg3^2/lg5=2lg5/lg2*2lg2/

log以2为底25的对数乘log以3为底4的对数乘log以5为底9的对数=?

8再问:是不是换成分数形式可以互相约掉再答:log2(25)*log3(4)*log5(9)=lg25*lg4*lg9/lg2*lg3*lg4=log2(4)*log3(9)*log5(25)=2*2

log以4为底3为真数×log以9为底2的对数×log以1/2为底4根号32

解;可以利用换底公式,变为相同的底数来计算原式=(log以2为底3为真数÷log以2为底4为真数)×(log以2为底2为真数÷log以2为底9为真数)×(log以2为底4√32为真数÷log以2为底1

log以2为底6的对数乘以log以3为底6的对数-(log以2为底3的对数+log以3为底2的对数)

log26*log36-(log23+log32)=log26*log36-log23-log32=log2(3x2)*log3(3x2)-log23-log32=(log23+log22)(log3

log以3为底2的对数+log以9为底2的对数的和,乘以,log以4为底3的对数+log 以8为底3的对数的和,的积

楼上写错了[log(3,2)+log(9,2)]*[log(4,3)+log(8.3)]=[log(3,2)+1/2log(3,2)]*[1/2log(2,3)+1/3log(2,3)]=3/2log

计算(log以2为底的3+log以4为底的9+log以8为底的7+……+log以2^n为底的3^n)*log以9为底^n

根据换底公式和对数运算法则,通式为:log(2^n)3^n=n/n*log₂3=log₂3∴[log₂3+log(4)9+log(8)27+……+log(2^n)3

计算log以2为底25乘以log以3为底2√2乘以log以5为底9的结果为

log以2为底25乘以log以3为底2√2乘以log以5为底9=2log25×(3/2)log32×2log53=6log25×log32×(log23/log25)=6(log25×1/log52)

log以3为底12+log以9为底36-log以27为底512的对数

换底公式:log以3为底12+log以9为底36-log以27为底512的对数=lg12/lg3+lg36/lg9-lg512/lg27=(2lg2+lg3)/lg3+(lg2+lg3)/lg3-3l

计算:(log以4为底3的对数+log以8为底3的对数)(log以3为底2的对数+log以9为底2的对数)- log以½

解题思路:本题柱考察学生对于对数的运算的理解和应用。解题过程:

解对数不等式:log以4为底(3^x-1)的对数 乘以 log以0.25为底((3^x-1)/16)的对数 小于等于 0

首先必须满足3^x-1>0原式为:(lg(3^x-1)/lg4)*(lg(3^x-1)-lg16)/lg0.25=0△=4(lg4)^2-3(lg4)^2恒大于零解为lg(3^x-1)>=1.5lg4

如果log以3为底[log以4为底(log以5为底的a次方)]等于log以4为底[log以3为底(log以5为底的b次方

log_3[log_4(log_5(a))]=0(1)log_4[log_3(log_5(b))]=0(2)(1)=>log_4(log_5(a))=1=>log_5(a)=4=>a=5^4(2)=>