ln的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:43:10
∫ln(1-√x)dx=xln(1-√x)+(1/2)∫√x/(1-√x)dx=xln(1-√x)-(1/2)∫(1-√x-1)/(1-√x)dx=xln(1-√x)-(1/2)x+(1/2)∫1/(
应该无法表示为初等函数再问:?再答:用了所有能用的方法,越积越复杂,所以我猜测这个积分无法表示为初等函数。再问:在0~pi/2上的定积分呢?再答:∫(0~π/2)ln(sinx)dx=-π/2×ln2
原式=∫ln(x+1)d(x+1)=(x+1)ln(x+1)-∫(x+1)dln(x+1)=(x+1)ln(x+1)-∫(x+1)*1/(x+1)d(x+1)=(x+1)ln(x+1)-∫dx=(x+
原式=∫ln(lnx)d(lnx)令lnx=y,得:原式=∫lnydy=ylny-∫yd(lny)=ylny-∫dy=ylny-y+C=lnxln(lnx)-lnx+C
积分;ln(sinx)/(sinx)^2dx=积分:ln(sinx)d(-cotx)=-cotxln(sinx)+积分:cotxd(ln(sinx))=-cotxln(sinx)+积分:cosx^2/
∫(ln√x)^2dx=x(ln√x)^2-∫xd(ln√x)^2=x(ln√x)^2-∫x*2ln√x*1/(2x)dx=x(ln√x)^2-∫ln√xdx=x(ln√x)^2-x∫ln√x+∫xd
ln(tanx)/(sinxcosx)=[ln(tanx)/tanx]secx^2则不定积分ln(tanx)/(sinxcosx)dx=积分[ln(tanx)/tanx]secx^2dx=积分[ln(
∫ln²xdx分部积分=xln²x-2∫xlnx/xdx=xln²x-2∫lnxdx分部积分=xln²x-2xlnx+2∫x(1/x)dx=xln²x
原函数不是初等函数.不是所有初等函数原函数都是初等函数,因此这个函数不定积分不能用基本初等函数的有限次复合和四则运算表示.但是,你要求它在某个区间上的积分却有一些巧妙的方法.
等于-xlnx+x+C(其中C是常数)
=1/2·∫lnx/xdx=1/2·∫lnxdlnx=1/4·(lnx)^2+C
ln(t-1)的不定积分为(t-1)ln(t-1)-t+c,方法都是一样的,都是分部积分法再问:嗯嗯我想知道有没有一般性的结论,例如t—1带入xlnx-x+c中得结果再答:这个没有一般性的结论,你需要
=1/3∫lnxd(x^3)=1/3(x^3lnx-∫x^2dx)=1/3(x^3lnx-1/3x^3)=1/3x^3lnx-1/9x^3+c
再答:通过软件计算说明这个积分是写不出显式原函数的
两个都是求不出来的,只能求近似值.这是我用计算器算的,都逃不开这个Li2函数.12那个ln(1-e^(-kx))的积分,也是求不出来的.我是用级数来求得.因为对于|x-1|<1, ln
一般用分步积分法吧.