ln根号下x 的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 04:10:52
∫ln(1-√x)dx=xln(1-√x)+(1/2)∫√x/(1-√x)dx=xln(1-√x)-(1/2)∫(1-√x-1)/(1-√x)dx=xln(1-√x)-(1/2)x+(1/2)∫1/(
原式=∫1/√(1-ln²x)*1/xdx=∫1/√(1-ln²x)dlnx=arcsin(lnx)+C
∫dx/[x√(4-ln²x)]=∫dlnx/√(4-ln²x)=∫dt/√(4-t²)=∫d(t/2)/√[1-(t/2)²]=∫dm/√(1-m²
原式=∫ln(x+1)d(x+1)=(x+1)ln(x+1)-∫(x+1)dln(x+1)=(x+1)ln(x+1)-∫(x+1)*1/(x+1)d(x+1)=(x+1)ln(x+1)-∫dx=(x+
∫arctan√xdx=xarctan√x-∫x*1/[1+(√x)^2]*1/2*1/√xdx=xarctan√x-1/2*∫√x/(1+x)*dx(令√x=t,则x=t^2,dx=2tdt)=xa
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))=xln(x+√(1+x^2)-∫xdx/√(1+x^2)=xln(x+√(1+x^2)-(1/2
∫ln(x+根号(x^2+1))dx=xln(x+√(x²+1))-∫xdln(x+√(x²+1))=xln(x+√(x²+1))-∫x/√(x²+1)dx=x
用分步积分法∫ln(x+1)/√xdx=2∫ln(x+1)d√x=2ln(x+1)*√x-2∫√xdln(x+1)=2ln(x+1)*√x-2∫√x/(x+1)dx对于∫√x/(x+1)dx令√x=t
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2)-∫xd(ln(x+√(1+x^2))[ln(x+√1+x^2)]'=[1+x/√(1+x^2)]/(x+√(1+x^2))=1/√(1
(sqrt(x+1)*((4*x+1)*log(sqrt(x+1)+sqrt(x))-log(sqrt(x+1)-sqrt(x))-2*x*log(x))+sqrt(x)*((4*x+1)*log(s
∫1/(x(ln√x)^3)dx=8∫1/(lnx)^3)dlnx=-4/(lnx)^2+C
∫ln(x+√(1+x^2))dx=xln(x+√(1+x^2))-∫xdln(x+√(1+x^2))=xln(x+√(1+x^2))-∫x/√(1+x^2)dx=xln(x+√(1+x^2))-(1
原式=∫√[ln(x+√(1+x^2))+5]d(ln(x+√(1+x^2)+5)=1/2*[ln(x+√(1+x^2))+5]^(-1/2)+C
∫dx/x[根号1-(ln^2)x]=∫d(lnx)/[根号1-(ln^2)x]=∫dt/[根号1-t^2](设t=lnx)=arcsint+C=arcsin(lnx)+C
∫1/[x√(1-ln²x)]dx=∫1/√(1-ln²x)d(lnx)=arcsin(lnx)+C公式:∫dx/√(a²-x²)=arcsin(x/a)+C
1/x是lnx的导数,所以1/xdx=d(lnx).∫ln(√x)/xdx=1/2×∫lnxdlnx=1/2×1/2×(lnx)^2+C
=1/2·∫lnx/xdx=1/2·∫lnxdlnx=1/4·(lnx)^2+C
=1/3∫lnxd(x^3)=1/3(x^3lnx-∫x^2dx)=1/3(x^3lnx-1/3x^3)=1/3x^3lnx-1/9x^3+c