ln根号x2 y2 arctany x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:51:01
ln(1+根号(1+X^2))是偶函数但是ln(x+根号(1+X^2))是奇函数,你要小心f(x)=ln(x+根号(1+X^2)),则f(-x)=ln(-x+根号(1+X^2)),f(x)+f(-x)
∫ln(1-√x)dx=xln(1-√x)+(1/2)∫√x/(1-√x)dx=xln(1-√x)-(1/2)∫(1-√x-1)/(1-√x)dx=xln(1-√x)-(1/2)x+(1/2)∫1/(
y=√(lnx)=(lnx)^(1/2)y'=1/2*(lnx)^(1/2-1)*(lnx)'=1/[2√(lnx)]*1/x=1/[2x√(lnx)]
ln(x-1)≥0ln(x-1)≥ln1x-1≥1x≥2定义域为[2,+∞)
将x换成-x,代入,ln(x+根号下(x^2+1)加上原式,会得到两者之和为ln(x^2+1-x^2)=0,得到为奇函数
算出是- 1/2等价无穷小 + 洛必达法则当x→0时ln(1 + x) ~ xln[x + √(1
两边对x求导得1/[1+(y/x)^2]*(y/x)'=1/[ln(x^2+y^2)]*[ln(x^2+y^2)]'1/[1+(y/x)^2]*(y'x-y)/x^2=1/[2ln(x^2+y^2)]
由于y=lnx是增函数,所以四个数的大小比较转化问真数部分的比较:2^ln2,ln2,根2,2,显然ln2
用分步积分法∫ln(x+1)/√xdx=2∫ln(x+1)d√x=2ln(x+1)*√x-2∫√xdln(x+1)=2ln(x+1)*√x-2∫√x/(x+1)dx对于∫√x/(x+1)dx令√x=t
ln√e=lne^(1/2)=(1/2)lne=1/2
利用对数性质,先化简,再求导 过程如下图:
即y=0.5lnx+(lnx)^0.5所以求导得到y'=1/2x+0.5/[x*(lnx)^0.5]
1/x是lnx的导数,所以1/xdx=d(lnx).∫ln(√x)/xdx=1/2×∫lnxdlnx=1/2×1/2×(lnx)^2+C
y=u^(1/2)u=lnVV=lnpp=x^(1/2)
y=In√x=In(x)^1/2=1/2*Inxx=e^(2y).反函数为y=e^(2x)没理解错吧?
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
ln+log10没有exp
y=ln√x=(1/2)lnxy'=1/(2x)再问:d()=1/根号下xdx括号内填什么再答:dy=(1/√x)dxy=∫(1/√x)dx=2√x+C(C是一个常数)
ln2/2=1/2ln2=ln(2的1/2次)=ln根号2