ln函数的导函数与原函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:57:54
分部积分法:∫ln(x^2+1)dx=xln(x^2+1)-∫2x^2/(x^2+1)dx=xln(x^2+1)-2∫[1-1/(x^2+1)]dx=xln(x^2+1)-2[x-arctanx]+C
原式化为2x*f(x)*f'(x)=[f(x)]^2-x^2x*{[f(x)]^2}'=f(x)]^2-x^2令u(x)=[f(x)]^2则x*u'(x)=u(x)-x^2x*u'(x)-u(x)=-
你只要想什么函数求导后会出现x的一次方的,是x²,但x²的导数是2X,所以前面乘以1/2即可,也就是说,y=x的一个原函数可以是y=x²/2再比如说y=sinx的原函数,
∫lnxdx=xlnx-∫xd(lnx)=xlnx-∫dx=xlnx-x+CC为任意常数
原函数递增的斜率就是导函数的数值!
不是.原函数的单调性和导函数的正负有关.如果导函数为正,则原函数单调递增;如果导函数为负,则原函数单调递减.
∫㏑﹙1/x﹚dx=﹣∫㏑xdx=﹣﹙x㏑x-∫xd㏑x﹚……分部积分=-x㏑x﹢x﹢C
这个……分部积分,我做任务.xIn(1+x)-x+In(1+x)+C
∫8x(x^2+1)^3dx=∫4(x^2+1)^3dx^2设x^2=u上式变为∫4(u+1)^3du=(u+1)^4+C所以原函数是(x^2+1)^4+C,C为常数
导函数的几何意义是原函数的图像在某点切线的斜率,另外,对求最值解不等式都有重要的意义.
再答:据说,看得懂我的过程的人最后都会成为学霸。二十年教学经验,专业值得信赖。如果你认可我的回答,敬请及时采纳,回到你的提问页,点击我的回答,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解
是不是没有初等函数解啊?应该可以用级数表示……
包括.某区间上的导函数小于0说明原函数在该区间上为减函数,但并没有说只要原函数在该区间上是减函数,该区间的导函数一定小于0因为在该区间上可能有的地方导函数无定义,就像本题,-1/2在原函数中有定义,但
分部积分法:∫xln(x-1)dx=(x^2/2)ln(x-1)-∫(x^2/2)/(x-1)dx=(x^2/2)ln(x-1)-1/2∫(x^2-x+x-1+1)/(x-1)dx=(x^2/2)ln
与Y交点对应的是f(0)时的斜率;当f'(x)
y=ln(1+tanx)e^y=1+tanxe^y-1=tanxx=arctan(e^y-1)交换x,y位置y=arctan(e^x-1)
设x=tanb,则原题=ln(tanb+secb)dtanb=tanbln(tanb+secb)-tanbdln(tanb+secb)tanbdln(tanb+secb)=(tanb)*((secb)
∫(lnx)^3/x^3dx=-(1/2)∫(lnx)^3d(1/x^2)=-(1/2)(lnx)^3/x^2+(3/2)∫(lnx)^2/x^3dx=-(1/2)(lnx)^3/x^2-(3/4)∫
用分部积分法:原函数=∫ln(1+x^2)dx=xln(1+x^2)-∫x/(1+x^2)*2xdx=xln(1+x^2)-2∫x^2/(1+x^2)dx=xln(1+x^2)-2∫[1-1/(1+x