lnx按x-2的幂展开的带有佩亚诺余项的n阶泰勒公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:55:22
y=x^lnxlny=(lnx)²y'/y=2lnx*1/xy'=2x^lnx*(lnx)/x
我写在我博客里了,你去看看吧不懂的再联系
在x=4点按泰勒公式展开,展开到(x-4)^3加个余项就好了余项=f^(n+1)[x0+θ(x-x0)](x-x0)^(n+1)/(n+1)!这里f^(n+1)[x0+θ(x-x0)]是f[x0+θ(
f(x)=1-(x-1)+(x-1)^2-(x-1)^3+...+(-1)^(n-1)(x-1)^n+RR=(-1)^n(x-1)^(n+1)/ξ^(n+2)ξ是1与x之间的某个值f'(x)f"(x)
f(x)=lnx展成x0=2处的Taylor公式(Peano余项).利用ln(1+x)=x-x²/2+x³/3+.+(-1)^(n-1)x^n/n+o(x^n)f(x)=lnx=l
f(x)=1-(x-1)+(x-1)^2-(x-1)^3+...+(-1)^(n-1)(x-1)^n+RR=(-1)^n(x-1)^(n+1)/ξ^(n+2)ξ是1与x之间的某个值f'(x)f"(x)
f(0)=0,f(1)=3.设A(0,0),B(1,3).则AB的斜率为3.f'(x)=3x^2+2解方程3x^2+2=3得x=(根号3)/3.(负根舍去)(根号3)/3即为所求.
你需要拉格朗日余项公式再答:再问:就是一下糊涂了那个“西塔x”怎么求的了!!谢谢啦,已经懂了~
{[In(In)]^x}'=x*[In(In(x)]^(x-1)*[In(Inx)]'=x*[In(In(x)]^(x-1)*[1/Inx]*[Inx]'=x*[In(In(x)]^(x-1)*[1/
首先变形,f(x)=x^(1/2)=(x-4+4)^(1/2)=gen((x-4)/4+1)*4令(x-4)/4=t则变成了原式=(根(t+1))*4由于根(t+1)的泰勒公式已知,展开,再代入即可~
1、x^4/(1-x)=x^4(1+x+x²+...)=x^4+x^5+x^6+...=Σx^(n+4)n=0→∞2、lnx=ln(2+x-2)=ln[2(1+(x-2)/2)]=ln2+l
一般来说,我们做f(x)展开成x的幂级数.所以我们要做该转换.首先,设u=(x-1)/(x+1)=>x=(1+u)/(1-u)那么题目等同于将ln((1+u)/(1-u))展开成u的幂级数那么ln((
1-lnx=(x-lnx)-x(1-1/x)凑微分∫[(1-lnx)/(x-lnx)^2]dx=x/(x-lnx)+C再问:过程能不能详细点再答:(x-lnx)'=1-1/x,∫[(1-lnx)/(x
原式=-∫(lnx)²d(1/x)=-(lnx)²/x+∫(1/x)d(lnx)²=-(lnx)²/x+∫2lnx/x²dx=-(lnx)²
拆开然后利用分部积分∫(2-lnx)/x²dx=∫2/x²dx+∫lnxd(1/x)=-2/x+(lnx)/x-∫1/x²dx=-2/x+(lnx)/x+1/x+C
用两次分部积分法就可以了,答案就是1/2*x^2*{(lnx)^2-lnx-1/2}+C再问:能不能给出详细解答,谢谢再答:我现在没空了啊,总之这个答案是对的
再答:再答:求采纳再答:泰勒公式有点长,后面一部分在第二张照片上。再问:这个题目啥意思再问:其实题目本身就不太懂再答:就是让你写lnx的n阶泰勒公式,要求是按(x-2)的幂的形式展开即泰勒公式中的x0
lnx在x=0无定义,故不能展开成x的幂级数再问:利用幂级数展开求其从0到1的积分
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出