线性方程组ATAX=ATb有解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:18:29
写出增广矩阵为11t41-12-4-1t1t²第2行减去第1行,第3行加上第1行~11t40-22-t-80t+1t+1t²+4方程有无穷多解,那么系数行列式一定为0,所以(t+1
不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.
设Ax=b,A是m×n矩阵,Ax=b有解当且仅当秩(A)=秩(A,b)Ax=b有唯一解当且仅当秩(A)=秩(A,b)=n
只需证明A^TAX=0的解是AX=0的解即可因为A^TAX=0的解是XTATAX=(AX)^T(AX)=0的解令AX=B,则BTB=0,所以B=AX=0证毕!
这是最小二乘解,解释有点麻烦,楼主看下线性代数中最小二乘法吧
AX=B有解的充要条件是r(A,B)=r(A)
未知数的个数多于方程的个数;比如三个未知数:X,Y,Z;两个方程:X+Y+Z=100X-Y+Z=1X=(101-2Z)/2Z任意Y=99/2无穷多组解用较专业一点的说法,非齐次线性方程组Ax=B有无穷
如果一个线性方程组无解或者存在不唯一的解,则这个线性方程组的线性行列式等于零._____A∩B=A∪B既后一个的否命题原型.
错误.若线性方程组AX=B有无穷多解,则它所对应的齐次线性方程组AX=0有无穷多解
设n元线性方程组系数矩阵为A,增广矩阵为B证明:①必要性:反证法:设r(A)<r(B),则B的行阶梯型矩阵中最后一个非零行对应矛盾方程0=1,这与方程组有解相矛盾,因此原假设不成立,即r(A)=r(B
利用矩阵的计算原方程组可化为如下矩阵11115111151111512-14-201-23701-23-72-3-1-5-2===>0-5-3-7-12===>00-138-473121100-2-1
很明显b=2,a不等于1时r(A)=3=n,你见过3个向量组的秩为4的吗?你理解错了.
多添了一行秩不会变小,因此有r(B)>=r(Ab),于是r(A)=r(B)>=r(Ab),但显然还有r(A)
设AX=b是非齐次线性方程组则Ax=b有解的充分必要条件是r(A)=r(A,b),即系数矩阵的秩等于增广矩阵的秩.这等价与向量b可由A的列向量组线性表示(这是从向量的角度解释,很重要)
-r(A)=r(A)-r(A)
第一个是对的.第二个有局限,只有当方程的个数与未知量的个数相同时才可对系数矩阵求行列式.掌握一个原则:方程组Ax=b有解的充分必要条件是r(A)=r(A,b).方程组Ax=b有唯一解的充分必要条件是r
因为有无穷多个解所以矩阵1-1-3201a-2a3a516的秩小于31-1-3201a-2a0a+314101-1-3201a-2a0014-(a-2)(a+3)10-a(a+3)14-(a-2)(a
我想到了一个好简单的办法不知道行不行再问:我已经做出了再答:再答:看下你的方法再问:再答:一样的和我的
(1)如果Aa=0,那么A^TAa=A^T(Aa)=A^T*0=0,这说明AX=0的任一解a都满足A^TAX=0;(2)如果A^TAa=0,左乘A得AA^TAa=A0=0,即(AA^T)Aa=0,根据
第1行+第3行*(-r)第2行+第3行*(-(1+r))第3行不动