线性回归中sig

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:15:53
线性回归中sig
用SPSS做线性回归,六个自变量的sig值都在0.1或者0.3左右,R2不到0.1,请问怎么办?

R2不到0.1,先不管偏回归系数的sig值了,找个好的理论指导,再选些其他重要的解释变量吧.再问:是数据处理的不对呢?还是这个模型本身有问题?多谢!

请问下用SPSS做线性回归后,继续做逐步回归分析后,sig还是为0.06.这种情况下是不是说明做法错误?谢谢

这个没有是否错误这一说法,sig>0.05,只能说明你选的自变量对于因变量没有什么解释或预测作用.当然也可能是自变量之间仍然存在共线性的问题,这个时候可以采用因子分析来解决,当然前提是你的自变量和数据

SPSS多元线性回归 怎么看T检验?哪个值是p值,也就是sig

要看每一个自变量的sig是否小于0.05,只要有一个不满足,则应选择STEPWISE方法,重新计算.

SPSS线性回归分析中常数项Sig值应该是什么范围的?他所对应的系数项过大怎么办?

sig是指的的显著性水平,就是p值,一般来说接近0.00越好,过大的话只能说不显著,这是你选择的样本和模型决定的,没法办

spss回归分析中 模型的 常量 sig值高于0.05 这个回归还有效么?

常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:

多元线性回归中 bint = NAN

int应该是调用regress函数的第二个返回值,也就是对回归系数的区间估计NAN表示不定量,说明regress函数无法对你的回归系数做区间估计,看看你是不是少了什么东西,比如说置信度

用SPSS做线性回归分析,怎么模型算可以用啊,到底是看F值还是SIG什么的,

要看sig值,那个就是P值,如果是小于0.001,一般情况下是显著的再问:不是说sig只要小于0.05就行么?再答:对的,看是在什么水平下,0.05也行再问:只要看sig么?其他值都不用看了?再答:是

spss多元线性回归,我的假设x1与y显著正相关,系数表中x1的系数为正,sig小于0.05 那说明了什么?

原假设是“X1的系数为0”,sig值低于0.05就可以拒绝原假设啦再问:也就是说,原假设是x1的系数为0,而不是我自己设置的那个假设吧?我都晕了一下午了。。。如果是我自己设置的假设,那就互相矛盾了再答

线性回归方程中,回归系数的含义是什么

回归系数越大表示x对y影响越大,正回归系数表示y随x增大而增大,负回归系数表示y随x增大而减小.回归方程式^Y=bX+a中之斜率b,称为回归系数,表X每变动1单位,平均而言,Y将变动b单位.

关于SPSS做多元线性回归,怎么去看自变量与因变量之间的相关性啊,sig还是F,还是B的值?求高人指点...

结果里,R值就是回归的决定系数,代表各变量能解释因变量的程度.ANOVA里,sig小于0.05证明回归方程有效.constant对应的B值是截距(常数项),其他变量对应B值就是变量的影响系数.变量对应

我做的spss多元线性回归分析中sig比较大 怎么调整数据

造价是把?不建议造价,不是因为道德原因,而是造假太费功夫,很费时间,非专业人士不能做我经常帮别人做这类的数据分析的

spss 回归(线性)分析,sig值 太大怎么办啊?

说明变量没有意义哦,你可以选几个变量纳入进去分析试试再问:先做“要因分析”,然后以分析出的“要因1,2,3,4”为变量进行回归分析。结果,“要因1”sig为零,“要因2,3,4”sig值却都严重偏大!

SPSS回归系数 SIG是什么?

在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significance,意为“显著性”,后面的值就是统计出的P值,如果P值0.01

统计学中线性相关和线性回归的区别.

主要区别有三点:1.线性相关分析涉及到变量之间的呈线性关系的密切程度,线性回归分析是在变量存在线性相关关系的基础上建立变量之间的线性模型;2.线性回归分析可以通过回归方程进行控制和预测,而线性相关分析

SPSS线性回归 帮忙看一下这几个sig的意义

线性回归得出的结果是y与x的关系,而不是两个变量是否相关,相关问题要用相关分析.到数第二个表的sig是F检验的结果,

线性回归方程中是什么意思

答:求和符号"∑".符号"∑"读作"西格玛",常用作求和,"∑"(∑上面有一个n,下面有一个i=1,右面有一个ai)读作"西格玛ai从i=1到i=n","∑"(∑上面有一个n,下面有一个i=1,右面有

在spss中做二元回归时.方差分析后sig=0.02,方程有意义吗

这个指的是回归中的拟合模型整体显著、也就是说回归中设的自变量是有预测作用的.但二元回归的话,2个自变量(预测变量),如果要看它们各自的作用是否显著,还需看各自的B或beta值.