线性变换 A^2 A=0 A=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:17:07
证:设k0α+k1Aα+k2A^2α+…+k(n-1)A^(n-1)α=0(*)等式两边左乘A^(n-1),由A^nα=0得k0A^(n-1)α=0而A^(n-1)α≠0,所以k0=0.代入(*)式得
A为幂零变换的充分必要条件是A在任意基下的矩阵A是幂零矩阵.问题转换为“A为幂零矩阵的充分必要条件是A的特征值全为0.”再问:谢谢你。再答:不客气。
只需证明A的特征向量中能够选出n为向量空间的一组基:(不妨设A是n行n列的)首先设λ是A的特征值,那么λ^2是A^2的特征值,∴(A^2)ξ=λ^2*ξ=Eξ=ξ∴λ^2=1∴λ=±1∴A只有特征根±
写出方程|A-xE|=0,其中b是系数,E是单位矩阵,左边行列式展开是多项式,把这个多项式记做f(x),即所求(这是一个定理,证明难度很大,这里就不证了)
A(E11)=(abcd)(1000)=(a0c0)=aE11+cE21,其他的类似推导!再问:大神,为什么(a0c0)=aE11+cE21?再答:E11=(1000),E21=(0010),那么aE
T(e1,e2,e3)=(Te1,Te2,Te3)=((1,0,1),(-1,1,0),(0,1,0))=(e1+e3,-e1+e2,e2)=(e1,e2,e3)KK=1-10011100
属于特征值1的特征子空间是所有对称矩阵所成的空间,维数n(n+1)/2,基自己求吧,结果不唯一再问:那维数是怎么算的呢?再答:写出基就知道了再问:可是题目讲t的特征值为-1和1是怎么得到的呢?麻烦写一
这种式子只要像解方程一样做消元处理就可以了X'=2X+YY'=3X+4Y第一个式子*4减第二个式子消去Y4X‘-Y’=5X第一个式子*3减第二个式子*2消去X3X'-2Y'=-5Y然后就得到了结果再问
(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker
这个我答过了应该也是你提问的你找找看
是这样:线性变换在某组基下的矩阵是唯一确定的但同一线性变换在不同基下的矩阵是相似的比如T(a1,...,an)=(a1,...,an)A,T(b1,...,bn)=(b1,...,bn)B两组基的过渡
AB+BA=E左乘AAAB+ABA=A又AA=0则ABA=A同理BAB=BAa=ABAaAa为AB特征值1的特征向量Ba=0ABBaBa为AB特征值0的特征向量即对任意a,Aa不等于Ba则r(A)+r
你要很快的掌握线性代数里,把向量组跟矩阵构建起桥梁,刚开始学习的时间可能吃力,但要经常看规律,就能建立这种连接了很显然A=2-10011100显然A是可逆的再问:����A�һ����Ұ������ϵ
圆体的A(α)=【a1,a2,a3】A应该是这样吧
你好你做的是对的由a≠1知a+a^2+a^3+a^4+a^5+a^6...+a^n=a(1-a^n)/(1-a)=(a-a^(n+1))/(1-a)=(a^(n+1)-a)/(a-1)该式对a=0同样
证明:若存在k0,k1,...,k(n-1),使得:k0a+k1Ta+...+k(n-1)T^(k-1)a=0由于T^(k-1)a≠0,等式两端同时作用T^(k-1)得:k0T^(k-1)a=0=>k
证:设k0a+k1B(a)+k2B^2(a)+……+k(n-1)B^(n-1)(a)=0(1)用B^(n-1)作用等式两边,因为B^n(a)=0,故得k0B^(n-1)(a)=0.又因为B^(n-1)
里面的3个数相等.因为右边有0,所以左边必须有0,但是a是分母.所以b=0.然后{1,a}={a^2,a}.所以1=a^2.a=±1.但是同时有a、1,所以a=-1
A是正交变换,即AA*=EA是对称变换,即A=A*所以显然有A²=AA*=E
a^2-a-1=0a²=a+1原式=[(a-1)(a+1)/a(a+1)-a(a-2)/a(a+1)]×(a+1)²/a(2a-1)=(a-1+a²+2a)/a(a+1)