线性代数b由a1,a2,a3线性表示,且表达式唯一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 07:56:58
证明:(a1+a2+2a3,a1+2a2+a3,2a1+a2+a3)=(a1,a2,a3)K其中K=112121211所以B组可由A组线性表示.又因为|K|=-4≠0,所以K可逆.所以(a1,a2,a
[b1b2b3b]=[a1a2a3b][1000010000101231]记后面那个矩阵为D,则|D|=1,因此向量组a1,a2,a3,b与向量组b1,b2,b3,b同秩.故结论成立.再问:能把我帮这
a2,a3,a4线性无关,a1可以由a2,a3,a4线性表示,所以向量组a1,a2,a3,a4的秩是3,极大线性无关组是a2,a3,a4,也就是说矩阵A的秩是3.线性方程组Ax=b就是向量方程x1a1
证明:设k1a1+k2a2+k3a3=b若b=0由0向量的唯一表示,证明a1,a2,a3线性无关若b不等于0向量,则k1,k2,k3至少一个不为0向量,不妨设为k3,若a1,a2,a3线性相关,设存在
k1(a1-a2)+k2(a2-a3)=0k1a1+(k2-k1)a2-k2a3=0k1=0,k2-k1=0-k2=0k1=k2=k3=0所以a1-a2,a2-a3线性无关.设k1(a1-a2)+k2
(1)a1,a2,a3,...am,b线性相关,因此存在不全为零的数k1,k2,...,km,l,使得k1*a1+k2*a2+...+km*am+l*b=0易得其中l一定不等于0,(因为若l=0,代入
4=b1+b3-b2故b1,b2,b3,b4线性相关.
1+b3-b2-b4=0,所以线形相关.
设k1(a1+a2)+k2(a2-a3)+k3(a1-2a2+a3)=0(k1+k3)a1+(k1+k2-2k3)a2+(-k2+k3)a3=0因为向量组a1,a2,a3线性无关,所以k1+k3=0k
/>线性相关.2.A的逆的特征向量也是A的特征向量,设β是A的属于特征值a的特征向量则Aβ=aβ,得k+3=a2k+2=akk+3=a得k=1或k=-2.3.由已知,|A|=0,得t=-2.再问:13
令kb+k1a1+k2a2+k3a3=0两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a
R(A1,A2,A3)=2说明这个向量组不是满秩则线性相关则存在不全为0的数k1,k2,k3k1A1+k2A2+k3A3=0.(1)若k1=0则k2A2+k3A3=0说明k2,k3线性相关而这与R(A
(b1,b2,b3)=11121-1-1121110-1-30231110-1-300-3满秩,所以线性无关
A4不可以有A1,A2,A3表示证明:有A1,A2,A3相关,而A2,A3,A4,无关得A1可由A2,A3表示假设:A4可以有A1,A2,A3表示,即A4=aA1+bA2+cA3(1)由于上面证得A1
a1,a2,a3应该都是3维向量吧,否则不存在/a1,a2,a3/行列式这么一说.那么a1,a2,a3是否线性无关,看是否存在不全为0的实数k1,k2,k3使得k1*a1+k2*a2+k3*a3=0,
若a1,a2,a3线性相关,则向量组B:a1,a2,a3,a1+a2(线性相关,)
|a3,a2,a1-2a2|c3+2c2=|a3,a2,a1|c1c3=-|a1,a2,a3|=-1.
a2,a3,a4线性无关,则a2,a3线性无关,则k1*a2+k2*a3≠0又a1,a2,a3,线性相关则k1a1+k2a2+k3a3=0必有k1≠0则a1能由a2,a3线性表出.
线性无关和线性相关在齐次或非齐次线性方程组中怎么表示啊,没有所谓的在线性方程组中表示线性相关或者无关的说法,线性相关和无关是向量组的特性,和线性方程没有直接联系a1-a2,a2-a3是Ax=0线性无关