lnx = 980 128 = 7.65625 x = 2113.82
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:26:30
lnx=tx=e^tdx=e^tdt∫lnxlnxdx=∫t^2*e^tdt=∫t^2de^t=t^2e^t-∫e^tdt^2=t^2e^t-2∫e^t*tdt=t^2e^t-2∫tde^t=t^2e
x=1时,最大值-1
令t=(1-lnx)/(1+lnx)得lnx=(1-t)/(t+1)x=e^[(1-t)/(t+1)]所以f(t)=(1-t)/(t+1)*e^[(1-t)/(t+1)]即f(x)=(1-x)/(1+
lny=lnx*lnx=(lnx)^2对x求导(1/y)*y'=2lnx*(lnx)'=2lnx/xy=(lnx)^x所以y'=2(lnx)^x*lnx/x
对于这样的复合函数,求导就用链式法则,对各个函数逐个求导,在这里y=arctan(lnx),可以令lnx=t,那么y'=(arctant)'*t',显然(arctant)'=1/(1+t²)
∫xlnxdx=1/2∫lnxd(x^2)=1/2x^2lnx-1/2∫x^2*1/xdx=1/2x^2lnx-1/4x^2+C∫lnx/xdx=∫lnxd(lnx)=1/2ln^2(x)+C∫dx/
y=(lnx)^x则lny=xln(lnx)两边求导y'/y=ln(lnx)+x*(1/lnx)*(1/x)即y'/y=ln(lnx)+1/lnx所以y'=y*[ln(lnx)+1/lnx]=(lnx
x→0时lnx→-∞ln(lnx)无意义∵limln[ln(1+x)]/lnx=lim[1/ln(1+x)*1/(1+x)]/(1/x)=limx/[(1+x)ln(1+x)]=lim1/[ln(1+
我发图了如是求不定积分就容易了,就是(lnx)^x+C
y=xsinlnx+xcoslnxy'=[xsinlnx]'+[xcoslnx]'=[1*sinlnx+xcoslnx*1/x]+[1*coslnx-xsinlnx*1/x]=sinlnx+cosln
这个是幂指函数,求导不能看作指数函数或幂函数求.这个可以用对数求导法则去算的即lny=lnx·lnx
求导f"(x)=1/x
y=(1+x-x^2)/(1-x+x^2)y'=[(1+x-x^2)'*(1-x+x^2)-(1+x-x^2)*(1-x+x^2)']/(1-x+x^2)^2=[(-2x+1)*(1-x+x^2)-(
-2除以x乘以lnx
这题不用分部积分啊∫1/(x*lnx)dx=∫1/lnxd(lnx)=ln|lnx|+C
∫(f'(lnx)/(x√f(lnx)))dx=∫(f'(lnx)/√f(lnx)d(lnx)=∫[f(lnx)]^(-1/2)df(lnx)=2√f(lnx)+C