lnx 1 x^2积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:56:24
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
∵∫arcsinxdx/√(1-x²)=[(arcsinx)²]│-∫arcsinxdx/√(1-x²)(应用分部积分法)==>2∫arcsinxdx/√(1-x
∫(-1到1)dx/(x²+1)²=2∫(0到1)dx/(x²+1)²令x=tanz,dx=sec²zdz当x=0,z=0//当x=1,z=π/4=2
∫dx*(secx)^2=∫dx/(cosx)^2=∫dx[(sinx)^2+(cosx)^2]/(cosx)^2=∫(sinx)^2/(cosx)^2dx+∫dx=∫sinx(-d(cosx))/(
由分部积分将原积分化为2sinxcosx/x从0到无穷积分上式等于sin2x/x由变量替换可化为sinx/x从0到正无穷积分该积分为Dirichlet积分其值为pai/2,pai为圆周率至于Diric
对积分区域进行分情况且画图:当x>0,和y>0的时候,得x+y=4!x0,-x+y=4!x>0,y
解答在下:http://hi.baidu.com/zjhz8899/album/item/5035c3dca053ea8b8c1029ea.html#
y=|lnx|的图像都在x轴上边但由於y=lnx在x
这个函数不是初等函数,因此无法求出不定积分,只能用估值定理算定积分的范围(1)设f(x)=e^(x^2-x)=e^[(x-1/2)^2-1/4]对于g(x)=(x-1/2)^2-1/4,在[0,2]区
原式=∫x²d(e^x)=x²e^x-∫e^xd(x²)=x²e^x-2∫xe^xdx=x²e^x-2(x-1)e^x+c
这两个问题的积分,首先要做的就是降次.(sinx)^2=(1-cos[2x])/2.∴∫(sinx)^2dx=∫(1-cos[2x])/2dx=x/2-1/2*∫cos[2x]dx=x/2-1/4*s
∫sin2x/(2+cosx)+xsinxdx=∫[-2cosx/(2+cosx)-x]dcosx=∫-2cosxdcosx/(2+cosx)-∫xdcosx=∫-2dcosx+4∫dcosx/(2+
解∫1/(1-x)²dx=-∫1/(1-x)²d(1-x)=-∫1/u²du=-(-1/u)+C=1/u+C=1/(1-x)+C
(2*3^(1/2)*atan((2*3^(1/2)*tan(x/2))/3+3^(1/2)/3))/3建议可以利用matlab或者maple计算一下
无法表示为初等函数
利用(sinax)^2=(1-cos2ax)/2,cos2ax你应该会积吧,然后你再去积分吧
有分部积分知识可知:∫x(lnx)²dx =(1/2)∫(lnx)²d(x²)=x²(lnx)²/2—∫xlnxdx=x²(lnx)