线代化简特征多项式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:21:59
特征多项式和极小多项式的根在不计重数的意义下完全一样,不可能出现特征多项式的一次因子在极小多项式里不出现的情况
因为矩阵A的特征多项式就是f(x)=|xI-A|.其中||是行列式,而I是与A同阶的单位阵.现在设矩阵B与A相似,即存在同阶可逆矩阵T,使得B=T^(-1)AT.这里T^(-1)是矩阵T的逆.根据特征
回代的值大概在1e+7左右.相比于多项式中的系数1e+20,其实这个结果误差已经很小了.
a=c=2b=-3软木他=1这个主要是用到A的伴随的特征值与A的特征值的关系;如果A的特征值是&那么A的伴随的特征值是IAI/&.特征值对应的特征向量两者都一样.再利用特征值的定义配合A的行列式为1就
根据公式:fA(x)=det(xI-A)方阵A的特征多项式fA(x)=|x-11-12-13;-14x-15-16;-17-18x-19|解方阵求出x就是特征值.
这个太简单了吧,求左边的行列式就等于右边了啊左边的行列式=(λ-2)[(λ+1)(λ-3)-4*(-1)]=(λ-2)[λ^2-2*λ-3+4]=(λ-2)(λ^2-2*λ+1)=(λ-2)(λ-1)
求解特征值,其实关键就是计算一个行列式. 计算矩阵对应的行列式通常使用3方法:1)直接展开.适用于简单矩阵(例如:对角矩阵,上三角等),和低阶矩阵.2)使用初等变换.3)特殊矩阵(例如:范达
要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式Ax=λx成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应
我告诉你吧我最近发现了一个定理:n阶矩阵的特征多项式的n-i次方的系数为矩阵A的所有i阶主子式之和.我用M[i]表示A的所有i阶主子式之和.并规定M[0]=1;易知M[1]=tr(A);M[n]=|A
A,B均与对角矩阵相似,且有相同的特征多项式,则他们相似于相同的对角矩阵,根据矩阵相似的传递性就得A相似B.
A的Jordan块只能有1阶的M={-1}或者2阶的N={{0,1},{0,0}}.所以A相似于如下几种可能{M,M,M,M,M}{M,M,M,N}{M,N,N}特征多项式分别(x+1)^5((x+1
如果只写出这三项还是很简单的,根据行列式的定义,行列式展开式中有一项是主对角线元素的乘积,λ^n与λ^(n-1)只能出现在这一项,很容易得出λ^n与λ^(n-1)的系数.至于常数项,自然是λ=0时行列
线性代数学习心得文/小潘各位学友好!首先让我们分析一下线性代数考试卷(本人以1999年上半年和下半年为例)我个人让为,先做计算题,填空题,然后证明题,选择题等(一定要坚持先易后难的原则,一定要.旁边有
求矩阵A的特征多项式的系数方法有:1.求矩阵A的特征多项式的系数是各级所有行列式之和.2.|λE-A|展开或用韦达定理的推广即求出|λE-A|=0的根λ的i次方的系数是:所有任意i个不同的根乘积之和.
A的特征值a1,a2,特征多项式p1,p2则A^2-2A+3E+2A^-1的特征多项式是?打印错误!应该是A的特征值a1,a2,对应的特征向量p1,p2则A^2-2A+3E+2A^-1的特征值与对应的
由Hamilton-Caley定理f(A)=0记g(x)=(f(x)-a0)/x,E为n*n单位阵则g(A)*A=-a0E所以A^(-1)=-g(A)/a0(A可逆当且仅当a0≠0)又g(A)*|A|
对于一个n阶矩阵A,只要算出了它的特征值λ1、λ2…λn,那么它的特征多项式就是P(x)=(x-λ1)(x-λ2)…(x-λn)比如该题三个特征值为λ1=1,λ2=4,λ3=1,其特征多项式就是P(x
p=[13-5-6];a=roots(p)';A=blkdiag(a(1),a(2),a(3))先求出特征值,然后以这些特征值为对角线元素的矩阵就是所求