ln(x 根号下1 x²)的奇偶性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:43:52
奇函数,可以用f(-x)=-f(x)来判断,也可以用:f(-x)+f(x)=0来判断本题使用第二种方法来判断比较好.f(x)=ln[x+√(x²+1)]、f(-x)=ln[-x+√(x
首先可得定义域是负无穷到正无穷关于原点对称.f(-x)=ln[根号(x^2+1)-x],f(x)=ln{x+根号(x^2+1)},所以f(-x)+f(x)=0,即f(-x)=-f(x),所以f(x)是
奇函数f(-x)=-f(x)再问:麻烦给下详细过程,谢谢再答:你用-x代替之后得到的是sinx+根号下1+sin^2x分子有理化之后得到是它的倒数加上ln正好是-f(x)再问:sinx+根号下1+si
1..先看定义域是不是关于原点对称,若定义域不关于原点不对称,则既不是奇函数也不是偶函数!若关于原点对称,则令y=f(x),若满足f(-x)=f(x),则为偶函数,若满足f(-x)=-f(x),则为奇
奇函数则定义域关于原点对称且对定义域内的任一x,都有f(-x)=-f(x)比如f(x)=x3定义域是R,关于原点对称且(-x)3=-x3所以f(-x)=-f(x)所以就是奇函数偶函数则定义域关于原点对
y(-x)=ln(-x+√(1+x^2))=ln[1/(x+√(1+x^2))]=-ln(x+√(1+x^2))=-y(x)所以是奇函数再问:麻烦你能不能在详细点啊谢谢!
f(x)=ln(x+根号下1+x2)f(-x)=ln(-x+根号下1+x2)因为(x+根号下1+x2)*(-x+根号下1+x2)=1所以f(-x)=ln(x+根号下1+x2)^(-1)=-ln(x+根
x²-1>=01-x²>=0∴x=1或-1∵f(1)=f(-1)∴它是偶函数
只要判断f(-x)+f(x)的值就行了f(-x)+f(x)=ln(-x+根号下(1+x的二次方)+ln(x+根号下(1+x的二次方)=ln(1+x^2-x^2)=ln1=0所以f(-x)=-f(x)即
先确定定义域,R,关于原点对称f(-x)=㏑(-x+√(1+(-x)²))=㏑(√(1+x²)-x)=㏑(1/(√(1+x²)+x))=-㏑(√(1+x²)+x
奇函数f(x)=-f(-x)定义域(-1,1)f(x)=√(1+X)-√(1-X)f(-x)=√(1-X)-√(1+X)相加为零
因为f(x)=ln[x+(x^2+1)^(1/2)]所以f(-x)=ln[-x+(x^2+1)^(1/2)]所以f(x)+f(-x)=ln[x+(x^2+1)^(1/2)]+ln[-x+(x^2+1)
(u/v)'=(u'*v-u*v')/v²这里u=x,v=√(x²+1)=(x²+1)^(1/2)u'=1v'=1/2*(x²+1)^(1/2-1)*(2x)'
f(X)=根号下(x+1)(x-1)=根号下(x²-1)f(-x)=根号下[(-x)²-1]=f(x)∴为偶函数再问:根号下x+1与根号下x-1能够相乘?再答:额,根据定义域确实是
非奇非偶,因为Ln(x)中的x要大于0,题目中满足条件的x的定义域并不对称,无论奇偶都必须定义域对称
定义域为Rf(-x)=ln(-x+√(x^2+1))-f(x)=-ln(x+√(x^2+1))=ln(1/x+√(x^2+1)),然后通分上下同乘x-√(x^2+1)得=ln(-x+√(x^2+1))
y=√(2x-1)+√(1-2x)2x-1≥01-2x≥0解得函数的定义域是{x|x=1/2}定义域不关于原点对称,所以这个函数是非奇非偶函数(奇函数偶函数的定义域都关于原点对称)
f(x)=ln[√(x²+1)-x]f(x)+f(-x)=ln[√(x²+1)-x]+ln[√(x²+1)-x]=ln{[√(x²+1)-x][√(x²
1.定义域为x不等于零x+1/x大于零即(x+1)x大于零x大于零或x小于-1所以定义域不关于原点对称所以所求函数为非奇非偶函数补充:f(x)=根号下x+(1/x)定义域为x大于零,还是不关于原点对称
=根号下x-1根号下1-x都存在的话x只能等于1y只能等于……0了?……