ln(1 x)的定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:51:27
∫[ln(1+x)/(1+x²)]dx=∫[ln(1+tanz)/(1+tan²z)]*sec²zdz(令x=tanz)=∫ln(1+sinz/cosz)dz=∫ln[(
分部积分:=积分(从0到1)ln(1+x)d(1/(2-x))=ln(1+x)/(2-x)|上限1下限0-积分(从0到1)1/(2-x)*1/(1+x)dx,后面是有理函数积分能积出来了.
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
∫tan(x)dx=∫sin(x)/cos(x)dx=-∫1/cos(x)d(cosx)=-ln|cosx||(0,1/4π)=ln1-ln√2/2=-ln√2/2∫(cos(x)ln(x)-sin(
答案是2ln(2+√5)-√5+1,楼上算错∫(0~2)ln[x+√(x²+1)]dx={xln[x+√(x²+1)]}|(0~2)-∫(0~2)xdln[x+√(x²+
答:∫f(x)dx=(lnx)^2+C(1---e)∫xf'(x)dx=(1---e)∫xd[f(x)]=(1---e)xf(x)-∫f(x)dx分部积分=(1---e)xf(x)-(lnx)^2=[
∫ln(x^2+1)dx=ln(x^2+1)x-∫xd(ln(x^2+1))=ln(x^2+1)x-∫x*2x/(x^2+1)dx=ln(x^2+1)x-∫2-2/(x^2+1)dx=ln(x^2+1
∫x/(1+x²)dx=1/2*/d(1+x²)x/(1+x²)=1/2*ln(1+x²)+C
取值区间呢?
题目写起来麻烦,我给你一个提示,用x=1/t代换发现这个积分等于它的相反数.所以,它本身等于零,若不明白,我可以再给你解释.
令x=tgt,原式=∫ln(tgt+1)dt,再令t=pi/4-s,tgt+1=2/(tgs+1),所以∫ln(tgt+1)=∫ln2-ln(tgt+1),现在可以解了吧?
1-sin1换元x=-t再问:还是不懂。。。。怎么办。。。。。
运用分部积分法,如下2张图:
当x∈(0,1)时,有ln(1-x)=-Σ1/n*x^n(n从1到+∞)故∫(0到1)lnx*ln(1-x)dx=∫(0到1)lnx*[-Σ1/n*x^n]dx(n从1到+∞)=-Σ∫(0到1)lnx
用的是定积分的定义.(ln(n)+ln(n+1)+...+ln(2n-1)-n·ln(n))/n=(ln(1)+ln(1+1/n)+...+ln(1+(n-1)/n))/n=ln(1)·1/n+ln(
这是定积分的定义∫(0->1)ln(1+x)dxdivide(0,1)intonequalintervalwithwidth1/n∫(0->1)ln(1+x)dx=lim(n->无穷)summatio