ln(1 tanx)dx在0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:58:14
ln(1+tanx)=lngen2+lnsin(x+pai/4)-lncosxlnsin(x+pai/4)在0到pai/4上的积分等于lnsinx在pai/4到pai/2的积分用pai/2减积分的上下
如果是求定积分的话就好了∫[0,π/4]ln(1+tanx)dx换元π/4-t=x=-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt==∫[0,π/4]ln[2/(tant+1)]
Lety=π/4-xthendy=-dxWhenx=0,y=π/4,whenx=π/4,y=0J=∫(0,π/4)ln(1+tanx)dx=∫(π/4,0)ln[1+tan(π/4-y)]-dy=∫(
∫[0,π/4]ln(1+tanx)dx换元π/4-t=x=-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt==∫[0,π/4]ln[2/(tant+1)]dt=∫[0,π/4]l
注意一个结论:∫[0,π/2]f(sinx)dx=∫[0,π/2]f(cosx)dx(定积分换元法那里的一道例题)则∫[0,π/2]f(sinx)dx=1/2[∫[0,π/2]f(sinx)dx+∫[
∫[0,π/4]ln(1+tanx)dx换元π/4-t=x=-∫[π/4,0]ln[1+(1-tant)/(tant+1)]dt==∫[0,π/4]ln[2/(tant+1)]dt=∫[0,π/4]l
∫1/tanxdx=∫cosx/sinxdx(令u=sinx,du=cosxdx)=∫cosx/u*du/cosx=∫(1/u)du=ln|u|+C=ln|sinx|+C_______________
ln(tanx)/(sinxcosx)=[ln(tanx)/tanx]secx^2则不定积分ln(tanx)/(sinxcosx)dx=积分[ln(tanx)/tanx]secx^2dx=积分[ln(
应该是求定积分作变换令pi/4-t=x,得:∫ln(1+tan(pi/4-x)dx(o≤x≤π/4)ln(1+tan(pi/4-x)+ln(1+tanx)=ln2=2:∫ln(1+tanx)dx故所求
这个好像书上都有解得答案哇,用的是参变量积分,这里就不介绍书上的方法了还可以用貌似对称的方法利用∫[0,a]f(x)dx=(1/2){∫[0,a]f(x)dx+∫[0,a]f(a-x)dx}上述公式你
y=ln(tanx+secx),y'=1/(tanx+secx)*(tanx+secx)'=(sec^2x+secxtanx)/(tanx+secx)=secx(cosx/cosx+sinx/cosx
不是说ln(1+tanx)dx=ln(1+tany)dx这两个一样,这两者不能化等号而是∫(0,π/4)ln(1+tanx)dx和对于∫(0,π/4)ln(1+tany)dy当积分形式一样而被积函数和
∫1/(1+tanx)dx=∫1/(1+sinx/cosx)dx=∫cosx/(cosx+sinx)dx=∫cosx(cosx-sinx)/(cosx+sinx)(cosx-sinx)dx=∫(cos
y=ln(tanx)/ln(sinx)dy/dx=[lnsinx.d/dx(lntanx)-lntanxd/dx(lnsinx)]/[ln(sinx)]^2=[lnsinx.(1/tanx)(secx
应该不能表示为初等函数.
令t=tanx原式=∫1/[(1+t)(1+t^2)]dt=(1/2)∫1/(1+t)dt-(1/2)∫(t-1)/(1+t^2)dt=(1/2)ln|1+t|-(1/2)∫(t-1)/(t^2+1)
再问:能不能用万能公式做一下再答:
在百度里不好打公式,我说下方法好了,1和tanX是可以分开的(1是常数),不定积分就得x-Ln|cosx|,你再定积分就好了,别说不会定积分,那我也没办法了.键议你看看基本公式,怀疑你有些公式不记得了