ln x 根号1 x 2的展开式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:56:16
标准答案为70x^14/3因为各项系数和等于256,所以当x为1的时候,2^n=256则n=8,T5=C下8上4x^(-4/3)x^6=70x^14/3
展开式的通项为Tr+1=C6rx-r令-r=-2得r=2所以展开式中含1x2的系数为C62=15故答案为15
由于没有找到笔,全部心算出结果,仅供参考!
刚刚学完这个,是老师的例题.推荐解法是先将两个括号相乘:原式=[(1-根号x)*(1+根号x)]^4*(1-2*根号x+x)=(1-x)^4*(1-2*根号x+x)x的系数为:C43*(-1)^3+C
展开式的通项为Tr+1=2rC3rxr令r=2的展开式中x2的系数等于22C32=12故选B
展开式前三项系数分别为:Cn0,Cn1*(-1/2),Cn2*1/4化简:1,-n/2,n(n-1)/8绝对值成等差数列,即:1+n(n-1)/8=-n解得n=1(舍去)或8第四项为Cn3(x)^(5
若得到(1+x+x²)(x-1/x)^6的展开式中的常数项有3个途径:1)用1乘以(x-1/x)^6中点常数项C(6,3)x^3(-1/x)^3=-20结果为-202)用x乘以(x-1/x)
(2x^(1/2)-x^(-1/2))^6通项:C(6,n)[2x^0.5]^n*[-x^(-0.5)]^(6-n)=2^n*(-1)^(6-n)*C(6,n)x^(0.5n)*x^(0.5n-3)=
(xsinα+1)^6展开式中x2项的系数与[x-(15/2)cosα]^4展开式中x3项的系数相等,∴c(6,4)(sina)^2=c(4,1)[-(15/2)cosa)],∴15[1-(cosa)
有两项系数的绝对值最大,分别是:-462X的10次方/根号X,+462X的7次方,
2^2n-2^n=992(2^n+31)(2^n-32)=02^n=32n=5(2X-1/X)^10的展开式中,二项式系数最大的项为第6项C(10,5)(2X)^5(-1/X)^5
本题出得有些问题,也可以说出得不对;若将二项展开式中的常数项也看作系数,则各系数和为2^(2n);当n=3时,2^6=64,但其中包含了常数项;展开式各项应为:C(2n,k)*x^[2*(2n-k)-
(1+x-x²-x³)^5=(1+x)^5·(1-x²)^5展开式中,有两项为x³项.即C(5,1)x·C(5,1)·(-x²)+C(5,3)x
(x2+px+q)(x3-x2+1)=x5+px4+qx3-x4-px3+qx2+x2+px+q=x5+(p-1)x4+(q-p)x3+(1-q)x2+px+q.根据题意得:p-1=0,q-p=0,1
展开式的通项为Tr+1=Cr6(2x)6−r(−1)r令6-r=2,得r=4∴展开式中含x2项的系数为C4626−4=60故选C.
展开式中含x3的项为(-C53-C51)x3,故x3的系数为-C53-C51=-15,故答案为-15.
(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4观察系数1,4,6,4,1,其实就是C(4,0),c(4,1),c(
应该是+号吧,将4此方拿出来逆用平方差得(1-x)^4*(1-根号)^2观察(1-x)^4,用二项式展开得X系数为-4,而(1-根号)^2中为1,所以乘起来得-4
-3吗再问:求过程再答:不好打,以【n,r】代n取r的组合数。二项式通项左=【6,r】(-1)^rx^r/2,右=【4,k】x^k/2,乘得【6,r】【4,k】(-1)^rx^(k+r)/2,k+r=