级数敛散性根号n 2 n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:20:33
收敛,因为当n充分大的时候,sin(1/n^2)
根据莱布尼兹判别法,要证两点:1、通项n充分大以后,un单调递减2、n趋于无穷时,un极限为0下面先证1.un>u(n+1).(1)lnn/n>ln(n+1)/(n+1)(n+1)lnn>nln(n+
首先,由Leibniz判别法,可知级数∑(-1)^n/√n收敛.两级数相减得∑(-1)^n·(1/√n-1/(√n+(-1)^n))=∑1/(√n(√n+(-1)^n)).这是一个正项级数,通项与1/
(-1)的n次方*根号下(n-根号n)-根号n当n是偶数时式子等于根号下(n-根号n)-根号n=[n-根号n-n]/[根号下(n-根号n)+根号n]=-根号n/[根号下(n-根号n)+根号n]-1/2
结论:发散.√(n+1)-√n=1/[√(n+1)+√n]>1/[√(n+3n)+√n]=(1/3)(1/√n)>=(1/3)(1/n)而∑(1/3)(1/n)=(1/3)∑(1/n)发散所以∑(n=
解题思路:请填写破解该题的切入点、思路脉络及注困惑:意事项(20字以上),学生将对此进行打分解题过程:解:∵AB=ACAD⊥BC∴BD=CD=1/2AB=8在直角三角形ABD中
1/n^p级别的正项级数只要p严格大于1就是收敛,只要p等于1或者小于1就发散——这个结论不是一般都是可以直接用的吗?.1/根号(n(n^2+1))【因为n(n^2+1)=n^3+n>n^3所以1/(
级数(-1)^n(根号n+1-根号n)=级数(-1)^n/(√(n+1)+√n)由于1/(√(n+1)+√n))递减趋于0,由莱布尼兹交错级数判别法,级数收敛又1/(√(n+1)+√n))≥1/(2√
收敛,用比较判别法.经济数学团队帮你解答.请及时评价.再问:可答案是发散…没有过程再答:那个答案肯定是印错了,我是教这个的,有绝对的把握。再问:谢谢啦
考虑其正项级数,对其分子进行放缩,利用比较判别法可知原级数收敛,具体解题步骤如下
解题思路:利用二次根式乘法解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/read
分子有理化,(n+1/2)的根号-n的根号,化为0.5/[(n+1/2)的根号+n的根号],大于等于0.25/(n+1/2)的根号,不收敛再问:大于等于0.25/(n+1/2)的根号这一步没看懂再答:
用比较判别法的极限形式,该级数收敛.经济数学团队帮你解答.请及时评价.
比较n·(1+ln^2n)>n·ln^2n,然后取倒数对n从2到无穷积分,可知是收敛的再问:有没有具体点的过程再答:过程有,但是这个上面不好写
级数Σ√(n-1)/(n^2+n)^(1/4)是发散的.事实上,因 √(n-1)/(n^2+n)^(1/4)=√(1-1/n)/(1+1/n^2)^(1/4)→1≠0(n→∞),据级数收敛的必要
/>您的采纳是我前进的动力~