级数∫x∧-qdx在-收敛?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:43:52
级数分子上有n次幂,所以底数绝对值小于1时收敛,大于1时发散.等于1时,因为前面有(-1)的(n-1)次幂,所以是交错级数,收敛的.所以收敛时底数的绝对值小于等于1.所以当x=0时Ix-aI≤1,-1
可以去掉第一项,然后控制级数能取(-1)^n/(2^n-2),或者直接用Dirichlet判别法
就是说级数的参数在变,所以级数的和在变,怎么变化呢?按照f(x)方式在变.就说收敛于函数f(x).
再答:这道题我做了很长时间
只是已知∑a[n]'(x)一致收敛的话∑a[n](x)可以无处收敛.因为由导数还不能完全确定原函数.例如取常值函数a[n](x)=1.a[n]'(x)=0,显然∑a[n]'(x)一致收敛,但∑a[n]
不是这样的,有很多方法可以稍微转化一下即可实现计算.比如:对数函数:ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k+..(|x|1时的值了.
根据阿贝尔定理,级数在x=-1处收敛,则适合(-1,3)的一切x使该级数绝对收敛,x=2也在其中.
这个不对吧,泰勒级数在收敛域内一定收敛于f(x)(要不干嘛叫收敛域呢,应该是如果泰勒级数在点x=x0的某邻域收敛,但它却不一定收敛于f(x).理论上说,如果f(x)的泰勒展开式中的余项R(x)满足当n
再问:错的,答案是三分之一再答:
〔ln(1-X)〕/x
解答如下:
讨论x-级数:1+1/2^x+1/3^x+...+1/n^x+.的敛散性,其中x为任意实数.当x>1时,将x-级数按一项,两项,四项,八项,.括在一起,得到:级数(1)1+(1/2^x+1/3^x)+
1、楼主的说法,没有错,完全正确.2、一个函数写成无穷项的级数形式时,是展开,是expand.把一个具有无穷项的级数,合成一个函数时,是求和,是找function.3、并不是总能如愿以偿地进行上面的事
令t=x-3,级数变为∑t^n/(n-n^3),ρ=lim(n→∞)|a(n+1)/an|=lim(n→∞)|n(1-n^2)/(n+1)((n+1)^2-1)|=lim(n→∞)n/(n+2)=1,
当x0时1+2x+3x^2+4x^3+.=(x+x^2+x^3+x^4+.)'=(x/(1-x))'=.收敛范围为(-1,1)再问:我问的是收敛区间内的和函数不是收敛区间再答:(x/(1-x))'计算
级数∑(0到无穷)an(x-1)∧n的收敛半径是1,则级数在x=3发散再问:怎么解的?能给个过程吗?再答:没有过程:收敛半径是1|x-1|
收敛根据定义,|an|=|(-1)^nan|再问:Yimoxilong是什么?再答:无穷小反写的3看下书上的定义
一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.
∑(∞,n→0)(2n+1)x^nR=lim|2n-1/2n+1|=1x=1时∑(∞,n→0)(2n+1)发散,x=-1时∑(∞,n→0)(-1)^n(2n+1)也发散,所以收敛域为(-1,1)令s(
公比的范围:-1