级数Σ(1到∞)[(e^n)*n! n^n]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:20:12
级数Σ(1到∞)[(e^n)*n! n^n]
级数∑n=1到∞ (根号下n)*sin(1/n^2)的敛散性

收敛,因为当n充分大的时候,sin(1/n^2)

n从1到无穷,n^2/n!级数求和

经济数学团队为你解答,有不清楚请追问.请及时评价.再问:得出e^x这一步可以写详细点吗再答:

证明级数∞∑n=1 e^ (-1/n^ 2)发散

因为对于e^(-1/n^2),当n→∞时,-1/n^2从-1趋向于0(左边趋近)而e^x对于x∈(-1,0),其值是从1/e逐渐趋向于1,相当于数列的a(n)项的极限趋向于1,根据数列和的收敛定义,正

证明级数∑(n=1到∞)(-1)^(n-1)*sin(π∕(n+1))是绝对收敛

显然级数为莱布尼茨级数,由于通项绝对值趋于0,故收敛而∑(n=1到∞)sin(π∕(n+1))的通项sin(π/(n+1))~π/(n+1)且∑(n=1到∞)π∕(n+1)发散,故原级数条件收敛按照你

判断级数Σ(1到∞)[(e^n)*n!/n^n]的收敛性

/>由于当n为任意正整数时,(1+1/n)^na(n)S(n)=a(1)+a(2)+……+a(n)>n*a(1)=n*en*e在n趋向无穷大时无穷大,所以S趋向无穷大,即发散

n(e^1/n -1)级数的收敛性

该级数发散,分析如图,

讨论级数 (-1)^n * ln(1+n) / (1+n) (n由1到正无穷的级数)的敛散性,

设y=ln(1+x)/(1+x)(x>2)因y'=[1-ln(1+x)]/(1+x)^21/n而∑1/n发散,故原级数不是绝对收敛

判别级数∑(n=1,∝) 1+n^3/e^n的敛散性

如果为1+···,那么当然发散,如果分子为(1+n)^3,那么发散.第一种情况通项不为1所以发散第二种情况通过比值极限法说明收敛.具体解题步骤如下以下为第二种情况的程序验证:

级数从1到∞ Σ[1/ln(n+2)]*sin(1/n) 判断该级数的敛散性

sin(1/n)~1/n原级数化为1/nln(n+2)这是一个重要的级数有级数从2到∞Σ1/n^p(lnn)^q有p>1或p=1且q>1是收敛p

判断级数∑2^n /n^n (n=1到∞)的敛散性

根据比值判断法,(n+1)项/n项以n趋近于无穷大的比值为1,所以级数可能收敛也可能发散

讨论级数∑[n=1到∞](-1)^n/(n-lnn)的敛散性

用莱布尼兹定理呀,可以看出1/(n-lnn)是单减的,这个你可以用构造函数来看,F(x)=1/(x-lnx)求导F(x)再问:当n趋于无穷时,Un为什么=0啊

判断级数∞ E n=1 3^n + n /4^n的敛散性

∑(3^n+n)/4^n=∑[(3/4)^n+n/4^n]两个收敛级数的和,收敛.

判断级数敛散性∑(n=1到∞)(n+1/n)/(n+1/n)^n

(n+1/n)/(n+1/n)^n开n次根号(柯西判别法),结果为0,小于1,收敛.且(n+1/n)/(n+1/n)^n恒正,故绝对收敛再问:答案给的是发散,莫非答案错了?

判定级数∑(n从1到∞)(n^(1/n)-n^(1/(n+1)))的敛散性.

设f(x)=n^(1/x),an=f(n)-f(n+1),有拉格朗日定理,对足够大的n有|an|=f'(ξ)=n^(1/ξ)㏑n/x^2

级数n=1到无穷大时,求级数1-cos∏/n的剑散性

运用等价无穷小x→0,1-cosx~1/2x^2因此,级数∑1-cos∏/n与级数∑1/2(pi^2/n^2)敛散性相同显然,级数∑1/2(pi^2/n^2)收敛(p级数p=2收敛)有比较法知原级数收

n=0到无穷,级数1/n-e^-n^2收敛性

1/n发散,e^-n^2收敛,所以整个级数发散e^-n的收敛性是很强的,强于所有的p级数

证明级数∑∫(n到n+1)e^(-(x^(1/2)))dx收敛,在线等

只要证明部分和数列有界即可.对任意的N,SN=积分(从1到N+1)e^(-根号x)dx=(变量替换)积分(从1到根号(n+1))2te^(-t)dt