级数Σ(1到∞)[(e^n)*n! n^n]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:20:12
收敛,因为当n充分大的时候,sin(1/n^2)
经济数学团队为你解答,有不清楚请追问.请及时评价.再问:得出e^x这一步可以写详细点吗再答:
因为对于e^(-1/n^2),当n→∞时,-1/n^2从-1趋向于0(左边趋近)而e^x对于x∈(-1,0),其值是从1/e逐渐趋向于1,相当于数列的a(n)项的极限趋向于1,根据数列和的收敛定义,正
显然级数为莱布尼茨级数,由于通项绝对值趋于0,故收敛而∑(n=1到∞)sin(π∕(n+1))的通项sin(π/(n+1))~π/(n+1)且∑(n=1到∞)π∕(n+1)发散,故原级数条件收敛按照你
/>由于当n为任意正整数时,(1+1/n)^na(n)S(n)=a(1)+a(2)+……+a(n)>n*a(1)=n*en*e在n趋向无穷大时无穷大,所以S趋向无穷大,即发散
该级数发散,分析如图,
设y=ln(1+x)/(1+x)(x>2)因y'=[1-ln(1+x)]/(1+x)^21/n而∑1/n发散,故原级数不是绝对收敛
如果为1+···,那么当然发散,如果分子为(1+n)^3,那么发散.第一种情况通项不为1所以发散第二种情况通过比值极限法说明收敛.具体解题步骤如下以下为第二种情况的程序验证:
sin(1/n)~1/n原级数化为1/nln(n+2)这是一个重要的级数有级数从2到∞Σ1/n^p(lnn)^q有p>1或p=1且q>1是收敛p
根据比值判断法,(n+1)项/n项以n趋近于无穷大的比值为1,所以级数可能收敛也可能发散
用莱布尼兹定理呀,可以看出1/(n-lnn)是单减的,这个你可以用构造函数来看,F(x)=1/(x-lnx)求导F(x)再问:当n趋于无穷时,Un为什么=0啊
∑(3^n+n)/4^n=∑[(3/4)^n+n/4^n]两个收敛级数的和,收敛.
(n+1/n)/(n+1/n)^n开n次根号(柯西判别法),结果为0,小于1,收敛.且(n+1/n)/(n+1/n)^n恒正,故绝对收敛再问:答案给的是发散,莫非答案错了?
设f(x)=n^(1/x),an=f(n)-f(n+1),有拉格朗日定理,对足够大的n有|an|=f'(ξ)=n^(1/ξ)㏑n/x^2
运用等价无穷小x→0,1-cosx~1/2x^2因此,级数∑1-cos∏/n与级数∑1/2(pi^2/n^2)敛散性相同显然,级数∑1/2(pi^2/n^2)收敛(p级数p=2收敛)有比较法知原级数收
1/n发散,e^-n^2收敛,所以整个级数发散e^-n的收敛性是很强的,强于所有的p级数
p>1,绝对收敛;0
只要证明部分和数列有界即可.对任意的N,SN=积分(从1到N+1)e^(-根号x)dx=(变量替换)积分(从1到根号(n+1))2te^(-t)dt