级数Un收敛于s,求Un 2Un 1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:02:32
果断收敛啦用比较判别法很容易得出结论的
(级数收敛则通项必趋于零)Un收敛则Un趋于0,则1/Un不可能趋于0(否则1=Un*(1/Un)趋于0,矛盾),所以1/Un一定发散
若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un
如果是u[n]是正项级数,那么由比较判别法易得u[n]³收敛.如果不加限制,那么u[n]³未必收敛,可以构造例子如下:u[1]=1,u[2]=u[3]=-1/2,u[4]=1/
因为limn^2*un存在,于是n^2*un有界,即存在M>0,使得|n^2*un|
你有问题也可以在这里向我提问:
∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(
在证明这个命题之前,我们先介绍一个关于正项级数的性质:若发散的正项级数∑Qn的一般项Qn单调递减且有极限limQn=0,则对于任意的ε>0和正整数n,必存在整数p≥0使得∑Qi>ε(注:此处求和指标中
由 ∑(n>=1)u(n)=s,可得 ∑(n>=1)[u(n)+u(n+1)] =∑(n>=1)u(n)+∑(n>=1)u(n+1) =2s-u(1).再问:(Un+Un+1)=(u1+u
∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始
发散un→0un^2-un+1/2→1/2根据级数收敛的必要条件,级数∑(un^2-un+1/2)发散再问:那个是平方-平方您这个后面怎么变成除以二了呢再答:你好歹也要加个括号吧再问:嗯再答:Sn=u
应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676
是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.
这是错的.比如Un=1/n
级数(un-un-1)收敛于0
∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-
这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级
lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0