级数u2n-1加u2n收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:22:51
级数u2n-1加u2n收敛
级数(1/b)^n收敛,a>b>0,证明级数1/(a^n-b^n)收敛

俺来回答一下,马上拍照再答:

级数收敛证明(-1)^n/n这个级数怎么证明收敛?

设an=1/n.∵(1)an=1/n>1/(n+1)=an+1,(2)an-->0(n-->∞),∴根据莱布尼茨判别法知,交错级数∑(-1)^n/n收敛.

设数列{nan}收敛,且级数∑an收敛,证明级数∑n(an-an-1)也收敛

先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

完成这道题:一台三相变压器,额定容量Sn=5000KVA,额定电压U1n=35KV,U2n=10KV,Y/Y接法,求:1

额定电流=Sn/(根号3*Un)I1n=5000/(1.732*35)=82.48AI2n=5000/(1.732*10)=288.68A因为是Y接法,故线电流=相电流所以I1p=I1n=82.48A

若级数Un收敛于s 则级数(un+un+1)收敛于

由   ∑(n>=1)u(n)=s,可得   ∑(n>=1)[u(n)+u(n+1)]  =∑(n>=1)u(n)+∑(n>=1)u(n+1)  =2s-u(1).再问:(Un+Un+1)=(u1+u

若级数∑Un收敛于S,级数∑【un+un+1】则收敛于

∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始

级数un收敛 那么级数un^2-un+1^2收敛吗

发散un→0un^2-un+1/2→1/2根据级数收敛的必要条件,级数∑(un^2-un+1/2)发散再问:那个是平方-平方您这个后面怎么变成除以二了呢再答:你好歹也要加个括号吧再问:嗯再答:Sn=u

若Un的级数收敛,则1/Un的级数是收敛还是发散

是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.

级数收敛

一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.

一个级数ΣUn收敛,怎么证明它的奇数项ΣU2n-1也收敛?

因为级数收敛,设ΣUn=A.n趋向于无穷大时可以取到所有的2n-1的数值.所以ΣU2n-1=A.得证.

已知数列U2n,U2n+1,U3n都收敛,证明Un也收敛?

条件说明Un奇数项形成的数列收敛,偶数项形成的数列收敛,这并不能保证Un收敛但是U3n这个数列将奇偶项结合在了一起,所以Un才会收敛,具体证明见图片

一个级数的一般项趋近于0,该级数的项任意加括号后级数收敛,那么该级数是否收敛

显然收敛的再问:如果没加一般项趋于0,就不一定了吧再答:也一定收敛,因为括号是任意加的

级数a2n-1+a2n收敛 且 liman=0,证级数an收敛

Sn是级数的部分和,则S(2n)有极限,记为limS(2n)=s.于是limS(2n+1)=limS(2n)+a(2n+1)=limS(2n)+lima(2n+1)=s.故级数收敛.

设级数Un-Un-1收敛,级数Vn收敛,证明UnVn绝对收敛

是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

∑ Un收敛,则∑ U2n收敛吗?反过来,∑u2n收敛,∑ Un收敛吗?

都不收敛.(1)un=(-1)^n/n∑Un收敛,∑U2n发散(2)取奇数项全为1,∑u2n收敛,∑Un发散再问:如果把∑U2n换成,∑(U2n-1+U2n)呢?再答:收敛再问:还有刚刚对于第二个问题

正项级数加括号后收敛,求证,原级数收敛

设正项级数∑{n=1,∞}Un加括号后构成正项级数∑{k=1,∞}Vk(Vk为k个括号求和)Un位于第k个括号中,其中k=k(n)∑{n=1,∞}Un的前n项部分和为Sn∑{k=1,∞}Vk的前k项部

级数的问题:任意项级数收敛则加括号还是收敛?

路过的来给个解释~(我就是无聊了,不用理我)首先,2楼的答案是完全正确的~级数的收敛性就是其部分和序列Sn的收敛性.而带括号的级数部分和序列是不带括号的部分和序列的子列Snk(这个不用解释吧……).如