级数u2n-1与u2n均收敛是级数un收敛的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:12:40
级数u2n-1与u2n均收敛是级数un收敛的
判定级数(∞∑n-1)(-1)^n-1/ln(n+1)是否收敛?如果收敛,说明是条件收敛还是绝对收敛

首先看∑1/ln(1+n)因为lim(n→∞)1/ln(1+n)/(1/n)=lim(n→∞)n/ln(1+n)=lim(n→∞)1/(1/(n+1))=lim(n→∞)n+1=∞而∑1/n发散,所以

数列收敛与级数收敛有什么区别

设数列Un,级数∑Un,再设级数∑Un的前n项的和为Sn,则数列收敛是指Un的极限LimUn存在;级数收敛是指Sn的极限LimSn存在.这对于数列Un来说,【区别】就是“极限LimUn存在”与“极限L

级数sin n/(n+1)收敛还是发散,如果收敛,是绝对收敛还是条件收敛,为什么?

收敛,Dirichlet判别法.这是最典型的一个用Dirichlet判别法判别收敛的例子.sinn的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[c

级数的绝对收敛与条件收敛的一道题

首先考虑a=[In(n^2+1)]/n^tt>0则lima=lim[2n/(n^2+1)*t*n^(t-1)](洛比达法则)=lim[2n^2/t*(n^2+1)]*[1/n^t]=0考虑绝对收敛当p

判断级数-1/√2+1/√3-1/√4..是否收敛 是条件收敛还是绝对收敛

这是级数Σ(-1)^n/√(n+1),n从1到∞这可以看成Σanbn,其中an=1/√(n+1),bn=(-1)^n因为{an}单调趋近于0,|Σbn|≤1有界,所以根据Dirichlet判别法,级数

条件收敛级数与绝对收敛级数的一个问题

①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的

级数1/n+1是收敛的还是发散的?

如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

证明级数(-1)^n/n是收敛的

设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛

很简单的级数问题,级数(那个符号)1/5n是收敛还是发散

发散,因为形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是p=1的p级数.调和级数是发散级数.在n趋于无穷时其部分和没有极限(或部分和为无穷大).

完成这道题:一台三相变压器,额定容量Sn=5000KVA,额定电压U1n=35KV,U2n=10KV,Y/Y接法,求:1

额定电流=Sn/(根号3*Un)I1n=5000/(1.732*35)=82.48AI2n=5000/(1.732*10)=288.68A因为是Y接法,故线电流=相电流所以I1p=I1n=82.48A

若Un的级数收敛,则1/Un的级数是收敛还是发散

是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.

级数收敛

一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.

判断级数∑(n从1到∞)(-1)^n/根号(n(n+1))是否收敛 若收敛是条件收敛还是绝对收敛

条件收敛①|(-1)^n/√[n(n+1)]|=1/√[n(n+1)]>1/√[(n+1)(n+1)]=1/(n+1),但∑1/(n+1)发散,故不绝对收敛②1/√[n(n+1)]单调递减趋于0,且∑

一个级数ΣUn收敛,怎么证明它的奇数项ΣU2n-1也收敛?

因为级数收敛,设ΣUn=A.n趋向于无穷大时可以取到所有的2n-1的数值.所以ΣU2n-1=A.得证.

已知数列U2n,U2n+1,U3n都收敛,证明Un也收敛?

条件说明Un奇数项形成的数列收敛,偶数项形成的数列收敛,这并不能保证Un收敛但是U3n这个数列将奇偶项结合在了一起,所以Un才会收敛,具体证明见图片

∑ Un收敛,则∑ U2n收敛吗?反过来,∑u2n收敛,∑ Un收敛吗?

都不收敛.(1)un=(-1)^n/n∑Un收敛,∑U2n发散(2)取奇数项全为1,∑u2n收敛,∑Un发散再问:如果把∑U2n换成,∑(U2n-1+U2n)呢?再答:收敛再问:还有刚刚对于第二个问题

级数收敛与数列收敛相比有什么区别

在传统的数学分析中,数列和级数没有很本质的区别.对于级数而言,定义部分和序列S(n)=a(1)+a(2)+...+a(n),那么传统的级数的收敛性就是按照部分和序列的收敛性来定义的.而对于数列{a(n