级数n从1到无穷,∑n(n 1)xn的和函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:05:36
泰勒级数展开,sin(1/n)~=1/n-(1/n)^3/6=1/n-6/n^3,所以nxsin(1/n)~=1-6/n^2,所以ln(nxsin(1/n))~=-6/n^2,所以求和是收敛的,因为1
从第二项开始,n/(n²-2)>1/n,从1/n发散可以知道该数列发散
级数通项un=ln(n/(n+1))lim(n→无穷)un=lim(n→无穷)ln(n/(n+1))=lim(n→无穷)ln(1/(1+1/n))=0因为sn=ln(1/(n+1))所以S=lim(n
经济数学团队为你解答,有不清楚请追问.请及时评价.再问:得出e^x这一步可以写详细点吗再答:
提示:S=∑n(n+1)x^n∑n(n+1)x^n积分=∑nx^(n+1)=x^2∑nx^(n-1)∑nx^(n-1)积分=∑x^n=1/(1-x)倒回去,需要求导2次
少了一个括号吧?应该是n/[(n+4)(n+5)]S=1/(5*6)+2/(6*7)+3/(7*8)+.=(1/5-1/6)+2(1/6-1/7)+3(1/7-1/8)+.=1/5-1/6+2/6-2
解:因为sn=根号(n+1)-1所以s=lim(n→无穷)sn=lim(根号(n+1)-1)不存在所以该函数收敛
答案是[pi(e^(2pi)+1)/(e^(2pi)-1)-1]/2利用x*cotx-1=\sum2x^2/(x^2-n^2pi^2)即可,取x=i*pi如果你不知道上面那个公式怎么来的就比较麻烦了,
tanπ/(n^3+n+1)^1/2等价于π/(n^3+n+1)^1/2而lim[π/(n^3+n+1)^1/2]/n^(3/2)=π即Σπ/(n^3+n+1)^1/2和Σ1/n^(3/2)具有相同的
级数都是n从1到无穷,∑Xn的和函数怎么求要根据通项Xn的具体形式.没有统一的求法.
再问:对数公式你记错了兄弟再答:信不信随你再问:答案是发散的再答:要是还是有疑惑,可以去翻书,但不要随便否定再问:再问:再问:不是随便否认的再答:是我错了再答:再问:哦比较法再答:嗯再问:再问:用分布
因为1/(n*(n+1))<1/n²,而级数∑1/n²是收敛的,所以级数∑1/(n*(n+1))也是收敛的.
收敛.这是交错级数,由Leibniz准则,后项绝对值小于前项绝对值(可有二者作商平方比较出),然后一般项绝对值极限为零,所以可判定其收敛再问:有没有具体过程啊。。。再答:首先它是交错级数,那(-1)^
令s(x)=Σ1/(2n!)x^2n=1/2!x²+1/4!x^4+1/6!x^6+.s'(x)=1/1!x+1/3!x³+1/5!x^5+.s''(x)=
由比值判别法得以下全为limn->无穷(u_n+1)/(u_n)=[(n+1)!a^(n+1)/(n+1)^(n+1)]/[n!(a^n)]/(n^n)=a(n/n+1)^n下面求出(n/n+1)^n
再问:你做的挺好.不过多了1个n原题是1/(n√4)再答:1/(n√4)在n取无穷大时,极限为1,不等于0,所以发散
已知∑{1≤k}1/k²=π²/6.故∑{1≤k}1/(2k)²=1/4·∑{1≤k}1/k²=π²/24.而由∑{1≤n}1/n²=∑{1