级数an,bn绝对收敛,则函数项级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:41:15
级数an,bn绝对收敛,则函数项级数
级数绝对收敛

A的级数单项取绝对值之后变为1/n,是指数为1的调和级数发散(调和级数1/n^p,指数p需大于1才收敛)B的级数单项取绝对值之后变为1/lnn>1/n>0,由比较判别法,所以发散C的级数单项取绝对值之

若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?

如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.

级数∑Bn,∑An-A(n-1)收敛,证明∑An*Bn收敛

∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛

级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?

证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.

设级数∑an、∑bn均收敛,则它们的柯西乘积是否收敛?

不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn

证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.

证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛

正项级数 an 收敛 bn小于等于an 则级数 bn 收敛 怎么证明?

这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

若数项级数和绝对收敛,则级数必绝对收敛.(对还是错呢?)

1、级数收敛,那么级数一般项数列一定收敛,并收敛到0.2、数项级数要是绝对收敛,那么该级数本身一定收敛.

函数项级数绝对收敛的定义是什么.若他绝对收敛是否一定一致收敛?

就是每一项都取绝对值后都收敛,若绝对收敛,必然他收敛,希望对你有所帮助!

证明级数绝对收敛 

再问:万分感谢再答:不客气,我也正在学,练练手

函数项级数绝对收敛,则绝对值级数的极限值与原函数项级数极限值相等吗

一般不相等.对收敛域内的任意一个自变量,函数项级数是一般数项级数,其收敛值可负可正,但其绝对值级数是正项级数,其收敛值一定非负.例如通项为-1/n^2的级数收敛于-Pi^2/6,通项为(-1)^(n+

设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛

再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再