级数an,bn绝对收敛,则函数项级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:41:15
(an+bn)^2
设M为{bn}的上界则|bn|
A的级数单项取绝对值之后变为1/n,是指数为1的调和级数发散(调和级数1/n^p,指数p需大于1才收敛)B的级数单项取绝对值之后变为1/lnn>1/n>0,由比较判别法,所以发散C的级数单项取绝对值之
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.
不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn
证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这
1、级数收敛,那么级数一般项数列一定收敛,并收敛到0.2、数项级数要是绝对收敛,那么该级数本身一定收敛.
就是每一项都取绝对值后都收敛,若绝对收敛,必然他收敛,希望对你有所帮助!
再问:万分感谢再答:不客气,我也正在学,练练手
一般不相等.对收敛域内的任意一个自变量,函数项级数是一般数项级数,其收敛值可负可正,但其绝对值级数是正项级数,其收敛值一定非负.例如通项为-1/n^2的级数收敛于-Pi^2/6,通项为(-1)^(n+
再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再
第一题有不错的解答了...主要写了你补充的题