级数a n的敛散性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:45:57
1.比较法lnn/n!inf}1/(n+1)*lim{n->inf}ln(n+1)/lnn=0*1=0
首先考察它对应的正项级数∑lnn/n当n>3时,lnn/n>1/n级数1/n发散又由于有限项不影响级数的敛散性因此不可能绝对收敛然后考察∑(-1)^n*lnn/n设f(x)=lnx/x可得出f(x)单
根据莱布尼兹判别法,要证两点:1、通项n充分大以后,un单调递减2、n趋于无穷时,un极限为0下面先证1.un>u(n+1).(1)lnn/n>ln(n+1)/(n+1)(n+1)lnn>nln(n+
设∑an收敛到SS,n->∞∴1/Sn->1/S≠0,∴∑(1/Sn)发散
级数=lim∫e^-根号xdx=后面就是求广义积分的敛散性了.应该可以换元分部积分搞定.目测收敛吧.再答:再答:额,应该没错吧,求采纳求好评再答:…再问:额不好意思啊上午没有网就只看了一眼…再问:没有
这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
这个属于交错级数,按照交错级数判断准则.(-1)^nan.1.an趋于0.2.an单调递减.此级数都满足,所以是收敛再问:an为啥单调递减再答:你也是要考研吗。判断交错及时的敛散性就是判断an的两种情
在∑|an|收敛的前提下,不能确定∑n·an的敛散性.例如an=1/n³,此时∑n·an=∑1/n²收敛.而对an=1/n²,此时∑n·an=∑1/n发散.而∑an/n一
因为lim(n->∞)1/(an+b)/(1/n)=1/a而Σ1/n发散所以该级数发散.
an如果不趋于0,那么2^an-1也不趋0,反之一样,他们同时发散现在设an趋于0当x趋于0时,由于lim(2^x-1)/x=ln2故lim(2^an-1)/an=ln2>0故∑(2^an-1)与∑a
1)该级数发散.∵(2n-1)/(2n)当n趋于无穷时等于1.2)该级数收敛.当n趋于无穷时,(1/2)^n、(1/3)^n都趋于0,原式=1/2+(1/2)²+(1/2)³+……
∑(n=0,∝)2^nsin(π/3^n)当n趋于无穷大时sin(π/3^n)~π/3^n所以∑(n=0,∝)2^nsin(π/3^n)与∑(n=0,∝)2^n(π/3^n)=∑(n=0,∝)π(2/
根植判别法:开n次方limb/An=b/ab/aa发散b=a可能收敛也可能发散
再问:如果两个级数相比的极限等于1其中一个级数收敛另外这个级数也收敛是这样么再答:是的,比较法就是这样的。
缩放一下,通项趋向于无穷大可知收敛.再答:再答:说错了,可知发散。。。。orz再答:缩放过程出了点小问题,应该是>n^n/()^2=∞再答:结论是一样的
图片点开到网页就清楚了 祝愉快
比较n·(1+ln^2n)>n·ln^2n,然后取倒数对n从2到无穷积分,可知是收敛的再问:有没有具体点的过程再答:过程有,但是这个上面不好写
1/ln(n+1)>1/(n+1),级数1/(n+1)发散,所以级数1/ln(n+1)发散.