级数(1-cos1 √n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:26:20
级数(1-cos1 √n)
级数1/n(n+1)的敛散性?

楼主的做法是:1/n(n+1)=1/n-1/(n+1)

级数n^(1/n)-1的敛散性

只要用导数证明存在一个M,使得x>M时,y=x^(1/x)-1单调递减就行了,那么存在一个N,使得n>N时,an单调递减数列,即存在一个N,使得n>N时,lim[a(n+1)/an]e时,y'=g'N

证明:级数∑(∞,n→1) sin(π√(n²+1))是交错级数,并证明该级数条件收敛.

首先由和差化积应该知道(-1)^nsin(π√(n²+1)-nπ)=(-1)^nsin(π√(n²+1))*cosnπ=(-1)^(2n)*sin(π√(n²+1))=s

判断级数∑(n=1,∞)cos1/n的收敛性

假设数列an是收敛的,那么有lim(n→∞)Sn=C(C是常数).那么lim(n→∞)an=lim(n→∞)(S(n+1)-Sn)=lim(n→∞)S(n+1)-lim(n→∞)Sn=C-C=0.所以

如何判断级数√(n+2)-2√(n+1)+√n的收敛性?

an=√(n+2)-2√(n+1)+√n=[√(n+2)-√(n+1)]-[√(n+1)-√n]=(分子有理化)1/[√(n+2)+√(n+1)]-1/[√(n+1)+√n].可令bn=1/[√(n+

判断正项级数的敛散性(1/√n)*ln(n+1/n-1)

ln(n+1/n-1)=ln(1+2/n-1),n趋于无穷时,ln(1+2/n-1)1的时候级数收敛.所以原式收敛.懂没?

用两边夹法则证明:lim n趋于无穷时cos1/n=1

请您先看一下高等数学课本上运用夹逼定理证明n趋于无穷时,sinx/x的证明过程.我是通过课本上的证明过程想到的.1/n>0.在课本上证明夹逼定理证明n趋于无穷时,sinx/x的证明时.通过单位圆得出了

判断级数∑1/√(2+n³)的敛散性

1/√(2+n³)<1/n^(3/2),而级数∑1/n^(3/2)收敛,故由比较判别法,级数∑1/√(2+n³)收敛.再问:不好意思,请问级数∑1/n^(3/2)为什么收敛?麻烦了

级数∑1/(3√n)怎样求其敛散性.

1/(3√n)>1/n>0而∑1/n发散故原级数也是发散的(比较判别法)

判断级数的敛散性∑ n=1→∞ 1/√n(n+1)

就是一个恒等变化.经济数学团队帮你解答.请及时评价.谢谢!

判断级数敛散性∑1/n√(n+1)

n√(n+1)分母次数大于1,所以级数收敛

级数(n+1)/n^2收敛性

级数的通项(n+1)/n^2>n/n^2=1/n,以1/n为通项的级数是发散的,所以根据比较判别法原级数是发散的.

级数1/a^√n的收敛性怎么判断?

设f(x)=1/|a|^√x,求下限1,上限+∝的反常积分,分成|a|1讨论下,|a|1时利用洛必达法则,能够得到反常积分收敛,而√n全包含于√x,所以原级数在|a|>1时收敛,|a|≤1时发散,过程

判别级数∞∑n=1(-1)^n(1-cos1/n)是绝对收敛、条件收敛还是发散

∑(-1)^n[1-cos(1/n)]对应的正项级数∑[1-cos(1/n)]=∑2{sin[1/(2n)]}^2后者收敛,则原级数绝对收敛.

∑1/√n级数收敛吗?如何证明?

发散p级数,只要p≤1就发散这个当结论记,不需要什么证明真要证明的话,这样证明:利用lim(n->+∞)Sn=常数来证1/√n级数的和求不出的1/√n>1/n对于∑1/nSn=1+1/2+1/3+……

计算级数 1/n^4

用傅里叶级数展开.得到答案pi^4/90见参考资料