级数 n^n 4^n*n!的收敛性?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:03:08
级数 n^n 4^n*n!的收敛性?
级数n的阶乘乘e的n次方除以n的n次方的收敛性

找收敛域,让后除以前一项,看看就可以

再问下你这个级数(3^n)*n!/(n^n)的收敛性怎么判断啊?

用达朗贝尔判别法,详见http://hi.baidu.com/fjzntlb/album/item/fd4506d044ccf1679a502781.html#

级数n+1分之1的收敛性

发散,与调和级数比较(用比较审敛法的极限形式).[1/n]/[1/(n+1)]的极限是1,因此这两个级数同敛散,而调和级数发散,所以这个级数发散.

判断级数n!/n∧n 的收敛性

再答:你的题目是本例的特例,收敛再问:嗯嗯

判定级数n=1-无穷,2^n*n!/n^n 的收敛性

利用根式判别法,lim(n→∞)(2^n*n!/n^n)^(1/n)=lim(n→∞)(2*(n!)^(1/n))/n=2/e<1,所以原级数收敛.

判断级数收敛性2^n*n!/n^n

用根值派别法lim开n次方(u(n))=lim(2/n)开n次方(n!)=0无穷大

1除以n阶乘的级数收敛性

比值判别法limn->无穷u(n+1)/un=1/(n+1)!/1/n!=1/n+1=0所以收敛其实这个级数的值就是e

n(e^1/n -1)级数的收敛性

该级数发散,分析如图,

求级数∑n^2的收敛性 n:∞

啊?这个问题?一般项n^2不趋于0,级数发散

(2^n*n!)/n^n级数级数收敛性

收敛.用比值判别法.

级数2/3^n-1/n^0.5的收敛性

一个收,一个发,所以还是发散再问:一个收敛,一个发散,就一定是发散吗?请问有证明之类的过程吗?再答:不一定,你这道前面等比,后面p,容易判断再问:你确定吗?再答:看级数1/n^0.5-2/3^n吧,n

微积分 判断级数∑(n=1,∞)n^n/3^n*n!的收敛性

达伦贝尔判别法,结果是e/3再问:可以给我写一下详细的步骤吗?实在是辛苦了,我不太懂。如果能用图画写出来,发图就实在是太太感谢了再答:

判断级数ln(n+1分之n)的收敛性

利用定义∑ln[n/(n+1)]=∑[lnn-ln(n+1)]=(ln1-ln2)+(ln2-ln3)+(ln3-ln4)+···+[lnn-ln(n+1)]+···当n→+∞时,部分和Sn=(ln1

级数ln n/n^2的收敛性

∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛

级数(n+1)/n^2收敛性

级数的通项(n+1)/n^2>n/n^2=1/n,以1/n为通项的级数是发散的,所以根据比较判别法原级数是发散的.

讨论级数∑1/(ln(n)^n)的收敛性

因为1/(ln(n)^n)开n次方=1/(ln(n))它的极限=0再问:他是要求讨论的,应该分情况啊再答:不需要,除非你字母搞错乱了。

求级数1/(1+1/n)^n的收敛性

发散,当n→∞时,1/(1+1/n)^n→1/e,不满足级数收敛的必要条件(通项趋于0),故级数发散

级数sin(n+1/n)π的收敛性

sin(n+1/n)π=sin(π+π/n)=-sin(π/n)即只需要判断-sin(π/n)的收敛性而limsinx/x=1【x趋向于0时,在这里就是sin(π/n)与(π/n)的极限是1,即是同阶

(n^4)/n!判定级数收敛性

用比值法:limun+1/un=lim[(n+1)^4/(n+1)!]/[n^4/n!]=lim(n+1)^3/n^4=0所以收敛