lim[1 x f(x) x]^1 x=e^3怎么推出f(0)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:16:07
2再问:你好,麻烦你能写写过程吗?我就是不明白过程!再答:设lim3xf(x)=lim[4f(x)+6]=a,则lim(3xf(x)-4f(x)-6)=a-a=0lim(3x-4)f(x)=6limf
答案4是错误的解法一:ln(1+2x)~2x(x→0) lim[ln(1+2x)+xf(x)]/(x^2)=2(x→0) lim[2x+xf(x)]/(x^2)=2(x→0)&nb
这个太麻烦了!通常思路嘛!很郁闷地告诉你!偶是用分析法做的!要求lim{2cosx+f(x)}/x^2 (x趋向0),那么,可以考虑用洛必达但洛必达要满足0/0型的极限才能用!lim{2co
limx→0[xf(x)-ln(1+x)]/x^2=2[xf(x)-ln(1+x)]/x^2=2+aa是一个无穷小量,limx→0a=0这就相当于limx→0f(x)=A那么f(x)=A+aa是一个无
希望对你有用哦要用到不少极限方法
首先分母趋于0,但极限有界,所以分子也趋于0才可能一看的确洛必达一次lim[f(x)+xf'(x)-1/(1+x)]/3x^2=1/3同理分子在x=0时应该为0所以f(0)+0-1=0f(0)=1洛必
能把题目写的明白一点吗?用公式编辑器写好,截个图上传上来也比你这样写好啊!
首先分母趋于0,但极限有界,所以分子也趋于0才可能一看的确洛必达一次lim[f(x)+xf'(x)-1/(1+x)]/3x^2=1/3同理分子在x=0时应该为0所以f(0)+0-1=0f(0)=1洛必
用泰勒公式展开法,在x=0点sinx=x-1/3!*x^3+o(x^4)f(x)=f(0)+f'(0)*x+f''(0)/2!*x^2+o(x^3)那么(sinx+xf(x))/x^3=(x-1/3!
根据洛笔答法则,lim((sinx+xf(x))/x3)=lim((cosx+f(x)+x·f'(x))/3x²)若x→0时这个极限存在,则必有limcosx+f(x)+x·f'(x)=0则
再问:你的回答我满意了。只是第三个过程可否完善一下,谢谢再答:f'(sinx)=cos^2x=1-sin^2x所以f'(x)=1-x^2所以f(x)=x-x^3/3
lim(x->0)((2-x)/(3-x))^1/x=lim(x->0)exp{1/x*[ln(2-x)-ln(3-x)]}x->0+1/x*[ln(2-x)-ln(3-x)]->ln(2/3)/x-
汗!按照你的说法,f(x)/x极限肯定不存在!因为lim[2+f(x)]/x=2其中2/x极限是不存在的,这应该是个无穷-无穷的极限.应该lim[ln(1+2x)-2x+2x+xf(x)]/x^2=2
答案:6解法:lim_{x→0}{x[f(x)-2]+2x+ln(1-2x)}/x^2=lim_{x→0}{x[f(x)-2]}/x^2+lim_{x→0}{2x+ln(1-2x)}/x^2=4,又l
关键:分类讨论||x-1|-3|+|3x+1|当x≥4,则:x-4+3x+1=4x-3当-2≤x≤-1/3则:|1-x-3|-3x-1=2+x-3x-1=1-2x当x≤-2.则:-x-2-3x-1=-
点击放大、再点击再放大:
∫(0,3)xf(x-1)dx=∫[0,2]x/(x-1)^2dx+∫[2,3]x/xdx前面一项,令x-1=t,dx=dt,x=t+1,x=0,t=-1,x=2,t=1=∫[-1,1](t+1)/t
根据条件sinx+xf(x)=x^3/3+o(x^3),而sinx=x-x^3/6+o(x^3),因此xf(x)=-x+x^3/2+o(x^3),得到f(x)=-1+x^2/2+o(x^2)f(0)=