系数矩阵的行列式等于零
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:39:52
如果齐次线性方程组的系数行列式等于零,则它有非零解,对!反之,依然成立!就是这儿系数能构成行列式才行!
无解或则多解
n阶矩阵的行列式就是这个矩阵的n阶子式.
因为0=det(A*A)=det(A)*det(A),所以det(A)=0,所以秩小于等于1.其中det()是矩阵的行列式.
行列式有=0不就是方程组的解么……?
这个系数行列式必然行数和列数是想等的,如果这个行列式的值是0那么行列式在行的初等变换中必然可以出现一行全部都是0的状态,这样一来也就是说以前的方程组里面相互可以消掉某个方程,这个时候就出现了未知数数量
对.齐次线性方程组肯定有一个零解,如果系数行列式等于零,那么解不唯一,所以有非零解.
当然不是的啦,行列式等于0,只要有两行或两列对应相等就可以了.
这个变换矩阵的第3行应该是001再问:为什么是001?y3=0x1+0x2+0x3不是吗再答:y3=x3再问:y1=x1+1/2x2+1/2x3y2=x2-x3后面不是没了吗?怎么会y3=x3?再答:
方阵A满秩A可逆|A|≠0
反证.若|A*|≠0则A*可逆再由AA*=|A|E=0得A=AA*(A*)^-1=0所以A*=0,这与|A*|≠0矛盾.故|A*|=0.
ABCD=|A||D-CA^-1B|其中A为可逆方阵当A可逆时,第1行乘-CA^-1加到第2行得AB0D-CA^-1B注(1):若AC=CA,则上式=|AD-CB|注(2):若A不可逆,且AC=CA,
分析:由于第2问,直接对增广矩阵初等行变换,可同时得系数行列式|A|增广矩阵(A,b)=1111101-12123m+24n+3351m+85r3-2r1,r4-3r11111101-12101m2n
两个都是充要条件如果矩阵A可逆,|A|不等于零如果矩阵A不可逆,|A|=0这个是线性代数的一个定理,证明我忘了
不能,两个非零矩阵A,B相乘可以等于零矩阵,例如A=1-1-11B=2222则AB=0,但A,B都不为0.再问:我说的是对应的行列式为零再答:一定能推出。因为AB=0所以|AB|=|A||B|=0,行
反例12-30
为什么系数行列式等于零,七(齐)次线性方程组就有非零解?以一元线性齐次方程为例:aX=0(1)a≠0时,(1)只有一个零X=0,不可能有非零解.a=0时,(1)就有无穷多个非零解,因为0乘什么都等于0
矩阵的秩小于3,说明矩阵的最简行阶梯有一行为全零,根据行列式的性质,可知此时行列式为零,上三角的形式
首先,这个矩阵要有行列式,也就是说,它是个n行n列的矩阵,不然连行列式都没有,更谈不上行列式的数值.再次,n行n列情况下,秩小于未知数个数,是为零.
系数矩阵A的行列式|A|=0的充要条件是0是A的特征值λ是A的特征值的充要条件是|A-λE|=0.再问:就是不知道为什么|A-λE|=0.这个为什么等于零再答:它等于0时(A-λE)x=0才有非零解α