limx趋近于0A-B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:47:50
lim(x-sinx)/x³洛必达法则=lim(1-cosx)/(3x²)1-cosx与x²/2是等价无穷小=lim(x²/2)/(3x²)=1/6你
∵lim(x→0)x/f(3x)=2∴lim(x→0)3x/f(3x)=6令t=3x,则x→0时,t→0∴lim(t→0)t/f(t)=6∴lim(t→0)f(t)/t=1/6令u=t/2,则t=2u
1.注意到每次上面求导之后会出一个cos2x,这个东西在x->0是极限是1,所以可以扔掉下面的过程中x->0就不写了,逐次求导lim(sin^4(2x)/x^3)=lim(8sin^3(2x)/6x^
运用洛比达法则上下对X求导,得出答案为m/n(a^m-n).再问:我久是这么做的答案不是这个,忘高手指教过程。再答:你的答案是多少?我觉得应该是m/n(a^m-n)。再问:m!/n!,那你能写下过程么
若看不清楚,可点击放大.
x→0,2x→0,sin2x~2x∴lim(x→0)sin2x/3x=lim(x→0)2x/3x=2/3
再问:就这一种方法吗再答:由于arcsinx与x等阶无穷小,可以直接得到2/3再问:limx趋近于无穷(1-2/x)^x/2-1求它的极限
x趋近0时,sinx与x、tanx与x都是等价无穷小即,lim(x->0)(sinx/x)=1lim(x->0)(tanx/x)=1limx趋近于0[6sinx-(tanx)f(x)]/x³
再问:你好我想问下下面图片的第一个怎么变成第二个?第一个化简之后不是1/(2cosx)么?再答:首先,cosx的极限是1,去掉,然后用罗比达法则求导,不要进行三角恒等变换。再问:你好~我想问下当x趋近
limx趋近于0时,sin3x/sin5x=3x/5x=3/5(等价无穷小代换)再问:为什么是这样啊?再答:x趋于0时,sin3x和3x是等价无穷小,sin5x和5x是等价无穷小
x趋近于0,tanx,sinx都是0,所以式子等于1-1=0
再答:用洛必达法则。上下同时求导再答:e的a次方是个数。所以导数为0再问:洛必达那一步再详细一点可以吗再答:
-1/30BUCUNZAIBUCUNZAI1
lim(x->0)x^2/(sin(x/3))^2(0/0)=lim(x->0)2x/sin(2x/3)(0/0)=lim(x->0)2/[(2/3)cos(2x/3)]=3再问:那是sin的平方再问
如果函数f(x)在点x0处有定义,则limx趋近于x0,f(x)肯定存在;如果limx趋近于x0,f(x)存在,则函数f(x)在点x0处不一定有定义.所以,选择B
原式=lim(x->0-)[(sinx/(2√x))/(3√x/2)](0/0型极限,应用罗比达法则)=lim(x->0-)[(1/3)(sinx/x)]=(1/3)lim(x->0-)(sinx/x
lim(x→0)sin3x/2x=lim(x→0)(sin3x/3x)*(3/2)=lim(3x→0)(sin3x/3x)*(3/2)lim(x→0)sinx/x=1=3/2