limx∫(x-t)dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 16:55:41
limx∫(x-t)dt
∫(0,x)f(t)dt-∫(-x,0)f(t)dt是周期函数的证明

记F(x)=∫(0,x)f(t)dt-∫(-x,0)f(t)dt,则F(x+T)=∫(0,x+T)f(t)dt-∫(-(x+T),0)f(t)dt=∫(0,x+T)f(t)dt-∫(-x-T,0)f(

求极限limx→0 ∫(0→2x) ln(1+t)dt/x^2

limx→0∫(0→2x)ln(1+t)dt/x^2洛必达法则=lim[x→0]2ln(1+2x)/(2x)=lim[x→0]ln(1+2x)/x等价无穷小代换=lim[x→0]2x/x=2希望可以帮

数学φ(x)=∫(0~2x)t(e^t)dt…求φ'(x)

φ(x)=∫(0~2x)t(e^t)dt=[te^t-e^t+C](0~2x)=2xe^(2x)-e^(2x)+1φ'(x)=[2xe^(2x)-e^(2x)+1]'=2e^(2x)+2x*2*e^(

设f(x)=∫(1,x^2) e^(-t)/t dt,求∫(0,1)xf(x)dt

f(x)=∫(1→x²)e^(-t)/tdtf'(x)=2x·e^(-x²)/x²=2e^(-x²)/xf(1)=0,∵上限=下限∫(0→1)xf(x)dx=∫

(0,x)∫f(t)dt,它的导数是什么?

1)首先(0,x)∫f(t)dt是一个变上限积分,可以看成h(x)2)设∫f(t)dt=F(x)+C的话,则h(x)=(0,x)∫f(t)dt=F(x)-F(0)两边求导,得h‘(x)=F’(x)=f

limx→0[∫(0→x)cost^2dt]/[∫(0→x)(sint)/tdt]

limx→0[(∫(0→x)cost^2dt])'/([∫(0→x)(sint)/tdt)'](罗比达法则)=limx→0[(cosx^2)/((sint)/t)]=1/1=1再问:什么时候能用洛必达

设f(x)=sinx+∫_{0}^{x}t*f(t)dt -x∫_{0}^{x}f(t)dt ,其中f(x)为连续函数,

f(x)=sinx+∫_{0}^{x}t*f(t)dt-x∫_{0}^{x}f(t)dt(1)两边对x求导得:f'(x)=cosx+xf(x)-∫_{0}^{x}f(t)dt-xf(x)即:f'(x)

f(x)连续,g(x)=∫ t^2f(t-x)dt,求g'(x)

这个题目吧,很把f(t-x)中的x分离出来令t-x=ydt=dyt=0,y=-xt=x,y=0g(x)=∫[-x,0](x+y)^2f(y)dy=x^2∫[-x,0]f(y)dy+2x∫[-x,0]y

求极限 limx→+∞ 1/√X ∫上限x下限1 ln(1+1/√t)dt

 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

limx趋向0(∫arctan t dt)/x^2 上限x下限0 求极限

使用洛必达法则以及等价无穷小lim(x→0)(∫0~xarctantdt)/x^2=lim(x→0)arctanx/2x=1/2

dx/(x+t)=dt

dx/(x+t)=dtdx=(x+t)dtx=(1/2*x^2+tx)dtxt=1/2*x^2t+1/2t^2x1=1/2(x+t)x=2-t

∫ 0到x tf(x-t)dt=∫ 0到x (x-t)f(t)dt 为什么?

令u=x-t0≤t≤xt=x-u则∫0到xtf(x-t)dt=∫x到0(x-u)f(u)d(x-u)=∫x到0(u-x)f(u)du=∫0到x(x-u)f(u)du与积分变量无关,所以∫0到xtf(x

几道关于极限的题 limx→∞,e^x(∫e^-t^2dt+a)=b积分上下限是根下x和0求a blimx→∞,[(x^

1.首先容易判断∫e^-t^2dt+a的极限是0,否则e^x(∫e^-t^2dt+a)的极限是无穷.因此a=-∫e^-t^2dt其中积分是0到无穷,所以a=-根π/2.因此e^x(∫e^-t^2dt+

limx趋向于正无穷,1/x积分号下由0到x |sint|dt

这里用到了一个结论:f(x)是周期为T的函数,则x趋于正无穷是,lim积分(从0到x)f(t)dt/x=积分(从0到T)f(t)dt/T.本题中,T=pi,积分(从0到pi)|sint|dt=2.因此

已知limx→+∞=1,如何证明limx→+∞∫(上限x下限0)e^tf(t)dt也趋向于正无穷呢?

因为lim(x→+∞)f(x)=1,故取ε=1/2, 则存在N,当|x|>N 后,|f(x)-1|1/21/2limx→+∞∫(上限x下限0)e^tdt

设函数f(x)连续,且f(0)≠0,求极限limx→0∫x0(x−t)f(t)dtx∫x0f(x−t)dt

令x-t=u;则:dt=d(-u)=-du;∫x0f(x−t)dt=∫0xf(u)d(−u)=∫x0f(u)du.因此:limx→0∫x0(x−t)f(t)dtx∫x0f(x−t)dt=limx→0x

设函数y=∫(0,x)(x-t)f(t)dt,f(x)为连续函数,

f(x)=e^x-∫(0,x)(x-t)f(t)dt=e^x-x∫(0,x)f(t)dt+∫(0,x)t*f(t)dt可知f(0)=1求导:f'(x)=e^x-∫(0,x)f(t)dt-x*f(x)+