limxy 根号x2 y2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:49:48
limxy 根号x2 y2
计算:[x(x2y2-xy)-y(x2+x3y)]÷3x2y.

[x(x2y2-xy)-y(x2+x3y)]÷3x2y,=(x3y2-x2y-x2y-x3y2)÷3x2y,=-2x2y÷3x2y,=-23.

已知x2y2-20xy+x2+81=0求x,y的值

x2y2-20xy+x2+81=(xy-10)2+x2-19=0则xy-10=0且x2-19=0得x=+-根号19y=+-10/根号19对于像这种未知数个数多于方程类型的式子,如果能求解,只有一种情况

已知多项式4x2m+1y-5x2y2-31x5y,

(1)4x2m+1y的系数是4,次数是2m+2;-5x2y2的系数是-5,次数是4;-31x5y的系数是-31,次数是6;(2)由(1)可得2m+2=8,解得m=3.

化简:[(xy-2)(xy+2)-2x2y2+4]÷(xy).

[(xy-2)(xy+2)-2x2y2+4]÷(xy),=(x2y2-4-2x2y2+4)÷(xy),=(-x2y2)÷(xy),=-xy

多项式3x3y- xy3+x2y2+y4按字母x的升幂排列是什么

按字母x的升幂排列就把y看成系数y4-xy3+x2y2+3x3y

分解因式:16x4-72x2y2+81y4.

原式=(4x2-9y2)2=(2x+3y)2(2x-3y)2.

已知x,y互为倒数,m,n互为相反数,求多项式mxy+n+x2y2的值

x,y互为倒数,m,n互为相反数x*y=1m+n=0mxy+n+x2y2=m+n+(xy)²=0+1=1

已知x-y=1/xy=3.求x3次方y-2x2y2+xy3

x3次方y-2x2y2+xy3=xy(x²-2xy+y²)=xy(x-y)²=3x3²=27如果本题有什么不明白可以追问,再问:=xy(x2-2xy+y2)=x

(x+1)(x+3)(x-2)(x-4)+24以及(x2y2+1)(x2y2-3)-14以及m2-2mn-3n2+3m-

(x+1)(x+3)(x-2)(x-4)+24=[(x+1)(x-2)][(x+3)(x-4)]+24=(x^2-x-2)(x^2-x-12)+24=(x^2-x-7+5)(x^2-x-7-5)+24

有这样一道题,计算(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2的值,其中x=0.25,y=-1;

(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2=2x4-4x3y-x2y2-2x4+4x3y+2y3+x2y2=2y3,因为化简的结果中不含x,所以原式的值与x值无关.

已知x2y2+x2+4xy+13=6x,求x、y的值.

x2y2+4xy+4+x2-6x+9=0,(xy+2)2+(x-3)2=0,∵(xy+2)2≥0,(x-3)2≥0,∴xy+2=0,x-3=0,∴xy=-2,x=3.将x=3代入xy=-2中,解得y=

二元微积分求极限limxy(x^2-y^2)/(x^2+y^2)根号(x^2+y^2) (x,y趋向于0)怎么算

lim0>xy(x^2-y^2)/(x^2+y^2)^(3/2),是这个?x=rcost;y=rsint;r->0xy(x^2-y^2)/(x^2+y^2)^(3/2)=r^2sintcost*r^2

点(x1y1),(x2y2)在反比例函数y=k/x的图像上,当x1

由题意在y=k/x的图像上的两点(x1,y1)(x2,y2),当x1<x2<0,y1<y2,则可知,y=k/x的图像在第二象限,y随x增大而增大.所以k<0..

计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y.

原式=(x3y2-x2y-x2y+x3y2)÷3x2y=(2x3y2-2x2y)÷3x2y=23xy-23.

多项式x5y2+2x4y3-3x2y2-4xy是(  )

按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,降幂正好相反,常数项应放在最前面.多项式x5y2+2x4y3-3x2y2-4xy中,x的指数依次5、4、2、1;因此A不正确;y的指数依次是2

y2+x2=2x,则x2y2的范围?

解题思路:圆的参数方程解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.

(2x2y-2xy2)-[(-3x2y2+3x2y)+(3x2y2-3xy2)],其中x=-1,y=2.

原式=2x2y-2xy2-[-3x2y2+3x2y+3x2y2-3xy2]=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=2x2y-3x2y-2xy2+3xy2+3x2y2-3x2y

化简并求值:(2x2y-2xy2)-[(-3x2y2+3x2y)+(3x2y2-3xy2)],其中x=−12,y=2

原式=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=-x2y+xy2,当x=-12,y=2时,原式=-(−12)2×2+(-12)×22=-52.

设数列{X}有界,又有limY=0,证明:limXY=0

因为数列{X}有界,所以设绝对值X

化简求值(2X2-2y2)-3(X2y2+X2)+3(X2y2+y2),其中X=-1,y=2

(2X²-2y²)-3(X²y²+X²)+3(X²y²+y²)=2x²-2y²-3x²y&