limx-0 1 tanx -1 sinx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:06:42
lim(x→0)(tanx-sinx)/x=lim(x→0)tanx(1-cosx)/x=lim(x→0)(1-cosx)=0
再问:我大一新生,对泰勒公式不太熟悉,能帮忙解释下吗:再问:大神请问在书上哪部分?我自己研究再答:一般在微分中值定理的那一章再问:谢谢啦
lim(x→0)(sinx-tanx)/{[3√(1+x^2)-1]*[√(1+sinx)-1]}用等价无穷小化简:(n√x+1)-1x/nsinx~x1-cosx~x²/2还要把sinx-
看不懂你写的什么再问:再答:等价无穷小代换再问:谢谢了!再答:x-tanx根据泰勒公式得出再问:才开始学泰勒公式,没太掌握再答:那一章是高数的重中之重再问:工科数分,简直云里雾里
下面极限下表我就省了啊,=(1+tanx)^[tanx/(xtanx)]=e^(tanx/x)=e再问:你这个是用洛必达法则做的么?有点不是很明白。再答:没有啊,这不是用罗比达法则的啊这是用我们高数数
用洛必达法则分子分母同时求导得3+cosx/3-sec^2带入x=0得x极限=2
通分+注意tanx=sinx/cosxlimx→0(1/sinX)-(1/tanX)=limx→0(1/sinX)-cosx/sinx=limx→0(1-cosx)/sinx等价无穷小替换x->01-
再问:第三题里面的a和c都能算出来了。那么b怎么算再答:我看错了,以为是趋于无穷大。再问:第2题最后一步(2/x)/e^x的极限为什么为0,2/x的极限是0,e^x的极限不是不存在吗?这种情况下怎么算
第二题用的是第二个重要极限. 【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
分子分母都趋近于0,用洛比达法则啊,分母求导是1,分子是[e^(tanx)]*(secx)2,2π代进去等1
limx->0[tanx-sinx]/sinx^3===>limx->0[tanx-sinx]/x^3===>limx->0[tanx(1-cosx)]/x^3===>limx->0[(tanx/x)
由(1+tanX)/(1-tanX)=3+2√2得tanX=√2/2((sinx)*2+√2sinxcosx-(cosx)*2)/((sinx)*2+2(cosx)*2)【分子分母同除以(cosx)*
limx->0(x-xcosx)/(tanx-sinx)=limx->01/2*x^3/(tanx-sinx)(运用洛必达法则)=limx->03/2*x^2/(sec^2x-cosx)(通分)=li
再答:用洛比达法则做的
再问:分母是三次根号下。。。不知道怎么打怎么做呢。。。麻烦了TUT再答:那也是一样的啊,3次根号下(1+x^2)也趋向于1,只要修改这一点就可以了另外请核实一下是3^√(1+x^2))还是3^√(1+
/>lim【x→0】(x-sinx)/(x+tanx)=lim【x→0】(1-cosx)/(1+sec²x)=(1-cos0)/(1+sec²0)=(1-1)/(1+1)=0答案: