limx (3x^3-4x^2 9) (2x^3 11x1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 00:34:30
limx→∞[(3x-1)/(3x+4)]^(x+1)=limx→∞[1-5/(3x+4)]^[(3x+4)/5*5/3+1/3]=limx→∞[1-5/(3x+4)]^[-(3x+4)/5]^[-5
应该是无穷大再问:可以详细一点吗?、再答:用洛必达法则,上下各自求导
分子分母同时除以x^2然后得3/4
[(3x+4)/(3x-1)]^(x+1)=[1+5/(3x-1)]^(x+1)=[1+5/(3x-1)]^(x-1/3)*[1+5/(3x-1)]^(4/3)=[1+5/(3x-1)]^(4/3)*
原式=(x-1)(x-2)/(x+4)(x-1)=(x-2)/(x+4)所以极限=(1-2)/(1+4)=-1/5
由于分子的阶为2分母的阶为1所以当x→∞时候原极限为∞也就是不存在.
上下除以x²limx→∞(x^2+3x-1)/(3x^2-2x+4)=limx→∞(1+3/x-1/x²)/(3-2/x+4/x²)x在分母的都趋于0所以=1/3
比如3/x^3这一项,分母趋向于无穷,那么这个极限就是0了
把x约分原式=(4x^2-2x+1)/(3x+2)x趋于0所以极限=(0+0+1)/(0+2)=1/2
原式=lim(x→2)(x+6)(x-2)/(x-2)(x-1)=lim(x→2)(x+6)/(x-1)=8/1=8
①limx→0(x+e^3x)^1/x=lim[e^ln(x+e^3x)^1/x=e^lim[ln(x+e^3x)/x]=e^lim[(1+3e^3x)/(x+e^3x)]罗比达=e^4②limx→0
此题,当x--->3时,即分母趋近0,要使极限存在,必须分子也同时趋近于0.下面我稍微解释一下,为什么“分子趋向于0的话,那这个题的极限不就是0了么”.原因就在于本题中分母也同时趋近于0,而分母为0是
(x²+3x-4)/(x²+x-2)=[(x+4)(x-1)]/[(x+2)(x-1)]=(x+4)/(x+2)代入计算出,极限是3.
用L'Hopital法则,上下同时求导两次再求极限得lim2/(6x-2)=o
答:lim(x→∞)(4x^2+4x-3)/(3x^2-2x+1)分子分母同时除以x^2=lim(x→∞)(4+4/x-3/x^2)/(3-2/x+1/x^2)=(4+0-0)/(3-0+0)=4/3
lim(x^2-3x-4)/(3x+4)=lim(x-3-4/x)/(3+4/x)=∞
用等价无穷小代换有原式=lim3x/(4x)=3/4
如果无穷比无穷型或0比0型用洛必达法则求,非常简单的.limx趋于无穷(x/x-1)^3x-1这个式子不是很明确,能不能再表达清楚点.
极限值=0因为,分子是分母的高阶无穷小也可以用洛必达法则验证过程如下图:再问:谢谢,我自己也做出来了~再问:我还想问一下这题:limx趋于无穷大(1/x)思念(1/x)再问:sin再答:极限=0换元,