limn趋于∞(2 3)的n次方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:43:35
limn趋于∞(2 3)的n次方
(1+x/n)的n次方在n趋于正无穷的极限

当x=0时,lim(n->∞)[(1+x/n)^n]=lim(n->∞)(1)=1;当x≠0时,lim(n->∞)[(1+x/n)^n]=lim(n->∞){[(1+x/n)^(n/x)]^x}=e^

求极限limn→∞(n-1)^2/(n+1)

典型的数列极限,n表示项数,只是取值1、2、3……,所以该题答案是+∞.关于n的问题,在高等数学有这种取正整数的默认,一般在题目中不作声明,且在高等数学中n几乎都是这种用法.所以答案没有错误.不用声明

lim(n趋于无穷)(1的n次方+2的n次方+3的n次方+4的n次方)的1/n次方=?

答案:lim[(1^n+2^n+3^n+4^n)]^(1/n)=lim[4^n*((1/4)^n+(2/4)^n+(3/4)^n+1)]^(1/n)=lim[4^n]^(1/n)*lim[(1/4)^

求limn→∞ n次根号下(2+sin²n)的极限

再问:不符合迫敛性啊,左边的极限是√2右边的极限是√3再答:n趋于无穷时,任何有限值的n次方根极限都是1。

求极限:limn→∞(n-1)^2/(n+1)

等于无穷.分子为二次,分子一次.再问:劳驾您说细点我听不懂再答:这种类型的极限,分子和分母都是多项式的,如果分子的次数高,那么极限为无穷,分母的次数高极限就是0.如果分子分母次数一样高,那么极限就是分

1、用洛必达法则求limx趋近于0时 sin^4(2x)/x^3 的极限 2、limn趋于无穷(1/n^a +2/n^a

1.注意到每次上面求导之后会出一个cos2x,这个东西在x->0是极限是1,所以可以扔掉下面的过程中x->0就不写了,逐次求导lim(sin^4(2x)/x^3)=lim(8sin^3(2x)/6x^

高数求极限:limn趋近于无穷大,分子为n个2的n次方相乘,分母为n的阶乘,求它们比值的极限

2^n=(1+1)^n>2n(2^n)^n>(2n)^n=2^n*(n^n)>2^n*n(n-1)(n-2).1=2^n*n!所以比值的极限>2^n→+∞另外,我这里有个公式:【(n+1)/e】^n≤

证明n趋于无穷时,2的n次方/n!的极限是0.

n!=n*(n-1).1=(n/2*.*1/2)*2^n,n趋于无穷大是2^n/n!=1/(n/2*.1/2)就是1/n型所以极限是0.

limn→∞(1+1/n)^n=e

这个问题很难的数学专业也一般不会考这个证明的啊这是个很重要的结论个人认为一般记住结论就可当然也要活用本人就是学数学专业的不过一般的数学分析书上对这个问题都做了一定的证明不过想看明白不是一件简单的事情~

n趋于无穷大时,求(n+1)/(n!开n次方)的极限.

先考虑(ln(1/n)+ln(2/n)+...+ln(n/n))/n------>积分(从0到1)lnxdx=-1即ln((n!)^(1/n)/n)--->-1ln(n/(n!)^(1/n))----

n乘以q的n次方,n趋于无穷大,0

怎么可能是1...1/(q^n)是1/n的高阶无穷小答案是0

证明limn→∞2的n次方减1除以3的n次方等于0

分子分母上下同时除以3的n次方,(2/3)的n次方极限=0,1/3^n极限=0,所以=0

(n-1/n+3)的2n次方当n趋于无穷时的极限

(1+2^n+3^n)的1/n次方?记为an,则1+2^n+3^n>3^n,所以an>31+2^n+3^n<3×3^n,所以,an<3×3^(1/n)所以,an的极限是3

求limn→∞((3^n+2^n)/(3^(n+1)-2^(n+1)))的极限

新年好!HappyChineseNewYear!1、本题是无穷大除以无穷大型不定式;2、由于本题的分子分母都不是连续函数,罗毕达求导法则不能适用;3、本题的解答方法是:  &nbs

limn趋于无穷负2的n次幂加3n次幂除以负2的n+1加3n+1次幂 求极限

limn趋于无穷负2的n次幂加3n次幂除以负2的n+1加3n+1次幂求极限=lim(n->∞)[-(2/3)^n+1]/[-2×(2/3)^n+3]=1/3

求极限limn趋于无穷 1/n^2+2/n^2+...+n-1/n^2+n/n^2

原式=lim(1+2+……+n)/n^2=lim[n(n+1)/2]/n^2=1/2lim(n+1)/n=1/2*lim(1+1/n)=1/2*1=1/2