limf(x)-f(0)存在,则f(x)在x=0处可导吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:10:03
limf(x)/x存在,分母-->0,故limf(x)=0,f(x)在x=0连续,limf(x)=f(0)=0f'(0)=lim[f(x)-f(0)]/[x-0]存在,所以f(x)在x=0连续且可导
因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导
请问F(x)和f(x)有什么关系?是不是F和f是一样的?如果是,那么:首先等价变形一下f(1+3x-5x²)-f(1)/x→f(1+3x-5x²)-f(1)/(3x-5x²
假设limf'(x)=A≠0,不妨设A>0由保号性得,对于存在x0>0使得x>x0时f'(x)>A/2f(x)>f(x0)+(A/2)(x-x0)>M则x>|M-f(x0)|/(A/2)所以x>max
因为limf(x)存在,则limf(x)是数值,没有未知数x则limx->πf(x)=limx->π[sinx/x-π+2limx->πf(x)]=limx->π[sinx/(x-π)]+2limx-
没有明白,可以写得清楚一些么?回答补充问题:这个命题不成立,举例来说,f(x)=根号x,f'趋于0,但是f没有极限
D不对吧,虽然左右极限存在,但是函数在那一点的极限不一定存在,除非左极限等于右极限再问:有什么依据吗?还是具体的例子再答:这个是极限的定义啊你不会不知道吧再问:x->0+limf(x)=x->0-li
参见高等数学上册,极限存在,而且是0/0型,所以必有x趋向于0时limf(x)=0
存在,因为x趋向于0时limf(x)/x存在且x=o处连续所以f(0)=0f'(0)=lim(x->0)f(0+x)-f(0)/x=lim(x->0)f(x)/x所以存在
如f(x)=1/(1+1/x)极限limf(x),x趋于0存在,但f(x)在x=0处没有意义再问:是不是因为分母x≠0,所以没有意义再答:是的
x→0,limf(x)/x=x→0,limf(x)-f(0)/x=f'(0)
limit(ln(1+x)/x,x=0,right)=1;limit(sinx/x,x=0,left)=1;但f(x)在x=0处没有函数值,即在该点处没有定义故在此处不连续,但极限存在是1
由于f(x)在x=0处连续,即lim{x->0}f(x)=f(0)所以f(0)=lim{x->0}f(x)=lim{x->0}[f(x)/x]*x=lim{x->0}[f(x)/x]*lim{x->0
若函数f(x)在x=0处连续,则(x趋向于零时),limf(x)=f(0).此时,若:limf(x)/x(x趋向于零时)存在,必有:f(0)=0.故:(x趋向于零时)lim{[f(x)-f(0)]/(
由于x趋于a+时,分母x-a是趋于0的,所以如果极限limf(2x-a)/(x-a)存在,分子f(2x-a)也必须趋于0,这样的0/0型未定式极限才可能存在.故x趋于a+时有limf(2x-a)=0,
找个左右极限不相等的函数,x大于等于0时,f(x)=1,x小于0时,f(x)=-1.这个函数在x=0时就满足你说的..再问:我也知道啊,可就是不会找啊再答:我说的那个分段函数就是呀
设极限为a,则存在再答:设极限为a,任取ε>0,存在δ>0,使得x-x0<δ有f(x)>a-ε,取ε=(a-l)再答:设极限为a,任取ε>0,存在δ>0,使得x-x0<δ有f(x)>a-ε,取ε=(a
在[x,x+1]上,用拉格朗日中值定理f(x+1)-f(x)=f'(ξ)*1x=lim(x->+∞)f'(ξ)=lim(ξ->+∞)f'(ξ)lim(x->+∞)f'(x)=0再问:lim【f(x+1