limf(x) 1-cosx=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:18:16
limf(x) 1-cosx=2
已知函数f(x)=cosx(sinx+cosx)-1/2

f(x)=sinxcosx+cos²x-1/2=1/2*sin2x+1/2*(1+cos2x)-1/2=1/2*sin2x+1/2*cos2x=√2/2*(√2/2*sin2x+√2/2*c

高数数学题 ! 求极限: 若lim f(x)存在,且f(x)=sinx/x-π +2limf(x), 则limf(x)=

因为limf(x)存在,则limf(x)是数值,没有未知数x则limx->πf(x)=limx->π[sinx/x-π+2limx->πf(x)]=limx->π[sinx/(x-π)]+2limx-

已知函数f(x)=2cosx(sinx-cosx)-1

f(x)=sin2x-2cosx^2-1=sin2x-cos2x-2=根号2sin(2x-45)-2最小正周期为派最大值为根号2-2将所有点纵坐标变为2倍,向左平移四分之派个单位,将所有点的横坐标变为

求证 sin^2x/(sinx-cosx)-(sinx+cosx)/tan^2 x-1=sinx+cosx

左边=sin²x/(sinx-cosx)-(sinx+cosx)/(sin²x/cos²x-1)=sin²x(sinx+cosx)/(sinx-cosx)(si

已知(cosx/2)=1-cosx,求f(x)

再问:最后的f(x)=2-2x^2没看懂再答:令cos(x/2)=t,式子就变成:f(t)=2-2t²所以,f(x)=2-2x²再问:好的,谢谢

1、1+cosx/1-cosx + 1-cosx/1+cosx=4cot^2x+2

(1+cosx)/(1-cosx)+(1-cosx)/(1+cosx)通分=((1+cosx)^2+(1-cosx)^2)/1-cos^2(x)=2*(1+cos^2(x))/sin^2(x)因为1=

求极限f(x)=xln(2-x)+3x的平方-2limf(x),则limf(x)=

由题设条件可知limf(x)存在,不妨设limf(x)=A,则f(x)=xln(2-x)+3x^2-2A注意到常数的极限是它本身,所以对上式取极限可得A=limf(x)=1*0+3-2A解得limf(

两高数选择,(1)设函数f(x)在x=0的某邻域内三阶可导,limf'(x)/(1-cosx)=-1/2 (x趋于0),

第一个由一阶导数fx可知fx的导数趋近于零,对极限用洛比达,上下再求导,知fx的二阶导数也趋近于零,上下再求导数,知fx三阶导数趋近于-1/2,小于零,即二阶导数是单调减函数,所以小于零时,二阶导数大

lim f(x)=A x趋向于a limf(x^2)=A x趋向于a^2/1

你的题目写的真奇葩y→alimf(y)=A令y=x^2x→根号a则y→(根号a)^2则lim(y)=A大概就是这么个意思,毕业了智商负数不好意思

当 x->0 若 limf(x)=0 且 lim(f(2x)-f(x))/x=0 证明:limf(x)/x=0

lim(f(2x)-f(x))/x=0所以对于任意ε,存在δ,-δ

当x趋于0时,limf(ax)/x=1/2,求当x趋于0时,limf(bx)/x=()

由题意知,f(0)=0,又不知f(x)是否可导,所以只能用导数定义做:lim(x→0)f(ax)/x=alim(x→0)[f(ax)-f(0)]/ax=af'(0)=1/2;所以f'(0)=1/2a;

已知f(0)=0,f'(0)=1,求极限limf(2x)/x (x趋于0).

lim(x->0)f(2x)/x=2lim(2x->0)[f(2x)-f(0)/2x]=2f'(0)=2

极限的问题limf(x)=a,limg(x)=∞,求limf(x)^g(x)的值?书上说若a>1,limf(x)^g(x

a=1的情况是很特殊的,情况很多,比如大家知道的x→0时(1+x)^(1/x)→e,一般而言,会把:"1^∞”这种形式的极限式叫做“未定型”.用专门的技巧来计算他的极限再问:为什么大于1可直接代入呢?

设函数f(x-1)=x^2+2x-4,则limf(x)=?(x->0 )

f(x-1)=x^2+2x-4设x-1=yx=y+1则f(y)=(y+1)^2+2(y+1)-4=y^2+2y+1+2y+2-4=y^2+4y-1则f(x)=x^2+4x-1limf(x)=-1(x-

lim(1+f(x)sinx)^1/2 -1 /(e^x-1)=2 x->0 则limf(x)=?

lim(1+f(x)sinx)^1/2-1/(e^x-1)=2lim1/2*f(x)*sinx/x=2limf(x)*sinx/x=4limf(x)=4

求f(x)=(x^3+x^2-3x+1)/(x^2-3x+2)的连续区间,并求极限limf(x) x→3

f(x)是一般的有理数形式,为初等函数,不连续的只能是奇点,故令:x^2-3x+2=0得:x=1或x=2从而在(负无穷,1)连续,(1,2)连续,(2,正无穷)连续.因x=3不是函数的奇点,故该处的极

设f(1)=2,且f’(1)=3,则limf(x)=?(x趋向1)

∵一元函数f(x)在x=1处可导,则f(x)在x=1连续∴lim(x->1)f(x)=f(1)=2即答案是:2望学习了点采纳!

已知limx/f(4x)=1,求limf(2x)/x x趋近0

二分之一再问:过程再答:lim(2x)/f(4x)=2:limf(4x)/(2x)=1/2:limf(2x)/(x)=limf(4x)/(2x)=1/2再问:第一步看不懂再答:两边都乘以2