lim(x→0)(1-cosx) ((secx³)²)3x²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:33:59
lim(x→0)(1-cosx)f(x)/(1-cosx)=lim(x→0)f(x)=0lim(x→0)[1+f(x)]^½=1
设f(x)=(cosx)^(1/ln(1+x^2)),lnf(x)=ln(cosx)/ln(1+x^2)x→0,ln(cosx)=ln[1+(cosx-1]cosx-1-x^2/2ln(1+x^2)x
运用lim(t--0)的等价无穷小:ln(1+t)~tsint~t就可以了看图:
洛必达法则
lim(x→0)(1-cosx)/(xsinx)=lim(x→0)(1-(1-2(sinx/2)^2)/(xsinx)=(1-(1-2*x^2*(1/2)^2))/x^2=1/2
原式=lim(x→0){[1+(cosx-1)]^[(1/(cosx-1))(-1)]}=1/lim(x→0){[1+(cosx-1)]^(1/(cosx-1))}=1/lim(t→0)[(1+t)^
x→0时,运用等价无穷小,即1-cosx~x^2/2(1-cosx等价于x^2/2,在乘除中可以直接替换)sinx~x(同理,在乘除中可以直接替换)于是原式=(x^2/2)/(x*x)=1/2
lim(1-cosx)x趋向0=1-cos0°=1-1=0
lim(x→0)(x^2+cosx-2)/(x^3)*ln(1+x)=lim(x→0)(0+1-2)*(ln(1+x)/(x^3))=lim(x→0)-(ln(1+x)/(x^3))=im(x→0)-
y=(sinx/x)^(cosx/1-cosx)lny=(cosx(lnsinx-lnx)/(1-cosx)limlny=lim(cosx(lnsinx-lnx)/(1-cosx)=lim(lnsin
X趋向0lim(xsinx)/(1-cosx)=X趋向0lim(xsinx)(1+cosx)/(1-cos^2x)=X趋向0limx(1+cosx)/sinx)=X趋向0lim(1+cosx)[x/s
令原式=y则lny=4ln(cosx)/x^2x→0,ln(1+x)和x是等价无穷小所以ln(cosx)~cosx-1而1-cosx和x^2/2是等价无穷小所以cosx-1~-x^2/2所以lim(x
洛必达法则0再问:过程能写了吗?再答:对X3求导,得3x2对(1-cosx)求导,得sinx所以原式=limx趋于0(3x2/sinx)由于等价无穷小代换当x趋于0时sinx=x原式=limx趋于0(
原式=lim(x->0){[1+(cosx-1)]^[(1/(cosx-1))(-1)]}=1/lim(x->0){[1+(cosx-1)]^(1/(cosx-1))}=1/lim(t->0)[(1+
lim(x→0)x²/1-cosx=lim(x→0)x²/[1-(1-2sin²(x/2))】=lim(x→0)x²/[2sin²(x/2)】=lim
lim(x→0+)(1-cosx)^sinx=e^lim(x→0+)sinxln(1-cosx)=e^lim(x→0+)ln(1-cosx)/cscx=e^lim(x→0+)sinx/(1-cosx)
1/2,可以洛必达,也可以代换1-cosx~1/2x^2,sinx~x再问:洛必达法则怎么求的?能写下过程吗?谢谢了再答:和楼下写的一样lim(x->0)(1-cosx)/(xsinx)(0/0)=l
y=(1-cosx)^(1/lnx)lny=(1/lnx)ln(1-cosx)=(x²/2)/lnx=x²/(2lnx)lim【x→0+】lny=lim【x→0+】x²/
1/cosx在x=0处连续,直接代值即可lim(x→0)(1/cosx)=1/cos0=1
使用两个重要极限,x趋向0时,sinx等价于xx趋向无穷时,(1+1/x)^x=e于是原式=lim(-3x+1)^(1/x)=lim(1+1/(1/-3x))^((1/-3x)*(-3))……把-3x