lim(x^2 y^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:26:06
lim(x^2 y^2)
lim(x,y)→(0,0) (x^2)y/(2x-y)的极限存不存在

经济数学团队帮你解答,有不清楚请追问.请及时评价.

求下列各极限 lim(x,y)→(0,1) (2-xy)/(x^2+2y)

f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-

高数极限题请教lim(x,y)->(0,0) x^2y^2 ln(x^2+y^2)求教

答案是0.首先,当0再问:�ܲ����������x=��sin��y=��cos��再答:�Ҳ����������˼�ǡ��ü�������������á�x=��sin��y=��cos�ȡ���

高数:x→0,y→2lim[ln(x+e^xy)/x]=?

运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→

求极限lim(y-x)x/根号下(x^2+y^2) x,y趋近于0

再问:请问您是不是有《大学数学习题册》的答案呀?可不可以发给我呀?我邮箱qf9292@163.com再答:真对不起,我没有。这题是我自己做出来的。

证明下列极限不存在(1) Lim x+y/x-y (2)lim x²y²/ x²y&sup

(1)令(x,y)沿y=kx趋近于(0,0),则Lim((x,y)→(0,0))x+y/x-y=Lim((x,y)→(0,0))x+kx/x-kx=kk取不同值则极限也不同,所以极限不存在.(2)极限

二元函数求极限:lim sin(x^2+y)/(x^2+y^2) x→0,y→0

题目有问题.无解应该有个条件,沿xxx曲线趋近与(0,0)再问:二元函数求极限:limsin(x^2*y)/(x^2+y^2)x→0,y→0不好意思,麻烦了有个符号错了再答:还是无解,除非第一个括号是

二元函数求极限:lim (sin(x^2+y)) / (x^2+y^2) x→0,y→0

=lim(x²y)/(x²+y²)【等价无穷小代换:当u→0时,sinu】=limy/(1+(y/x)²)令y=kx,则y/x=k.原极限=limy/(1+k&

(lim) x/x-y=

你这个题目存在很多问题,(lim)x/x-y是X除以X在减去Y呢,还是除以(X-Y)这个整体啊,细节问题啊,值得注意.如果我猜的没错的话,答案应该是1再问:(LIM)X→0Y→0再答:还是1

一道二元函数极限题(lim)(x+y)/(x^(2)+y^(2))其中x,y都趋近于无穷

0因为x平加y平大于等于xy的绝对值,故上式的绝对值小于等于xy分之(x+y).分成两项,即x分之一和y分之一之和,均趋向于零.故得.

求极限lim(x→1 y→2) (x²+y²)/xy

这个式子在(1,2)连续所以极限=(1+4)/2=5/2再问:可以写写计算的过程吗。再答:就是这个啊因为连续,所以可以直接代入

lim(xy/(x^2+y^2))^x^2 x,y趋近无穷 求极限

极限不存在吧x=ky时(k大于0)极限值与x=y^2时极限值不相等所以极限不存在对于多元函数要使得极限存在必须是从各个方向趋近极限值都一样.再问:答案极限为零主要是式子外面还有个X^2是那个式子的指数

求极限lim(x,y)→(+∞,+∞) (xy/(x^2+y^2))^x^2

若x+无穷=y+无穷[(x^2)/(2x^2)]^(x^2)=(1/2)^(x^2)=0

求极限lim(x,y)→(+∞,+∞) [(xy)/(x^2+y^2)]^xy.

求极限lim(x,y)→(+∞,+∞)[(xy)/(x²+y²)]^(xy)[(xy)/(x+y)²]^(xy)≦[(xy)/(x²+y²)]^(xy

求极限lim(xy)^2/(x^2+y^2)^2,(x,y)趋于(0,0)

lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y

y=lim (x → 0) ( √1+xsinx - √cosx) / arcsin^2x.y=lim (n → ∞)

1.y=lim(x→0)(√1+xsinx-√cosx)/arcsin^2x=lim(x→0){[(sinx+cosx)/2√(1+xsinx)+sinx/2√cosx]}/[2arcsinx/√(1

lim(x→0y→1)(1+xe^y)^(2y+x/x)求极限

是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对

lim sin(y×x^2+y^4)/(x^2+y^2) x,y都趋于0,

令y=kx则limsin(y×x^2+y^4)/(x^2+y^2)=limsin[kx^3+(kx)^4]/[(1+k^2)*x^2]分子用等价无穷小替换=lim[k+(k^4)*x]*(x^3)/[