lim(x->4 3) sin(9x^2-16) (3x-4)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 00:19:16
(tanx-sinx)/sin³x=(sinx/cosx-sinx)/sin³x=(1/cosx-1)/sin²x=[(1-cosx)/cosx]/(1-cos²
lim(x->0)sin(sinx)/x=lim(x->0)[sin(sinx)/sinx]*[sinx/x]∵x->0;t=sinx->0,lim(x->0)[sin(sinx)/sinx]=lim
构造函数g(x)=ln(1+x)g'(x)=1/1+xb=x^2,a=sin^2x用拉格朗日中值定理:ln(1+x^2)-ln(1+sin^2x)=g(b)-g(a)=(b-a)g'(t)其中t介于a
(1)sin2x5xsin2x2lim-------------------=lim--------------*lim------------*------=2/5x→0sin5xx→0sin5xx
令x1=2n,x2=2n+1/2,当n趋向无穷时x1,x2都趋向无穷,但此时sinπx1的极限为0,sinπx2=1;所以:x趋向无穷时sinπx的极限不存在.注:证明函数的极限不存在,只需说明它的两
再问:[x]啊。。。带取整符号啊。。。再答:带取整符号的话,可以考虑用两边夹的方法。
/>无穷小与有界函数的乘积,x在x趋于0是是无穷小,而后面那个是有界函数,希望可以帮到你,所以是0
当x趋近于0时,sinx=x所以原式=sinx/x=1
第一题x→9时为0/0型,使用罗比达法则;第二题使用重要极限(1^∞型),
limx->0(sqrt(sin(1/x^2))令1/x^2=t当x趋近0时,t为无穷大,函数极限不存在(如取t=2kπ+π/2时,sint=1t=2kπ时sint=0)所以limx->0(sqrt(
啊啊啊啊,极限是1
lim(x趋向于3)sin(x-3)/(x*x-9)=lim(x趋向于3)sin(x-3)/[(x-3)(x+3)]=[lim(x趋向于3)sin(x-3)/(x-3)]*[lim(x趋向于3)1/(
lim[sin(1/X)*sinX]=limX[sin(1/X)*sinX]/X=lim(sinX)/X*(sin(1/X)/(1/X)当X趋近无穷大时,lim(sin(1/X)/(1/X)=11/X
题目应该是当x逼近到0得时候,limx^2*cos(1/x)=0lim(sin(x^2*cos(1/x)))/x=lim(x^2*cos(1/x))/x=lim(x*cos(1/x))=0再问:你用罗
原式=lim(x→9)(sinx+sin9)(sinx-sin9)/(x-9)=lim(x→9)(sinx+sin9)*lim(x→9)(sinx-sin9)/(x-9)=2sin9*lim(x→9)
limsin(xy)/x(x.y)->(0.2)=lim{[sin(xy)/xy]*y}=im[sin(xy)/xy]*(limy)(x.y)->(0.2)=1*2=2这里把(xy)看作一个整体,当(
lim(x趋近于0)sin√xlim(x趋近于0+)sin√x=0lim(x趋近于0-)sin√x不存在所以左极限≠右极限所以lim(x趋近于0)sin√x不存在
原式=lim(x->0)sinx(secx-1)/x^3=lim(x->0)(secx-1)/x^2=lim(x->0)(1-cosx)/x^2cosx=lim(x->0)2sin^2(x/2)/x^
没有步骤,结果可直接写0.定理:无穷小与有界函数的乘积是无穷小.希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,再问:为什么等于零,需要求导吗再答:定理:无穷小与有界函数的乘积是无穷小