lim(x,y)到(0,0)3xy 根号xy 4 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:31:24
lim(x,y)到(0,0)3xy 根号xy 4 2
求(x,y)趋近于(0,0)时,lim((x^3)+(x^2)y+x(y^2)+(y^3))/((x^2)-xy+(y^

令:x=rcosθ,y=rsinθlim[(x,y)->(0,0)]((x^3)+(x^2)y+x(y^2)+(y^3))/((x^2)-xy+(y^2))=lim[(x,y)->(0,0)](r^3

一道数学题:lim(x,y)→(0,0)(x-y)/(x+y)

应该分二种情况讨论,1、当X→0时Lim(x-y)/(x+y)=Lim(-y)/y=-12、当Y→0时Lim(x-y)/(x+y)=Limx/x=1

求一个二元函数的极限lim((x^2)y+x^5)/(x^4+x^6+2(x^3)y+y^2))(x,y)->(0,0)

极限不存在设y=kx^2代入得到:lim((x^2)y+x^5)/(x^4+x^6+2(x^3)y+y^2))(x,y)->(0,0)=lim(x->0)(kx^4+x^5)/(x^4+x^6+2kx

lim xy/(x+y)的极限不存在怎么证明啊? (x,y)--(0,0)

当沿曲线y=-x+x^2趋于(00)时,极限为lim(-x^2+x^3)/x^2=-1;当沿直线y=x趋于(00)时,极限为limx^2/2x=0.故极限不存在.再问:刚问阁下是干什么地,这么强再答:

求下列各极限 lim(x,y)→(0,1) (2-xy)/(x^2+2y)

f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-

lim sin2x/3x x趋向0

罗比达法则=cos2x*2/3=2/3或者等价代换=2x/3x=2/3再问:什么是等价代换?!再答:等价无穷小,还没学吗?没学也快了,sinx~x→0。一些等价无穷小是常用的,会学的。再问:真的沒学啊

证明lim(x,y)→(0,0),xy/根号(x²+y²)=0

因为│xy/(x^2+y^2)^(1/2)│≤0.5(x^2+y^2)^(1/2)任给小正数ξ>0,要使│xy/(x^2+y^2)^(1/2)│<ξ,只要(x^2+y^2)^(1/2)

lim(x->0)((2-x)/(3-x))^1/x

lim(x->0)((2-x)/(3-x))^1/x=lim(x->0)exp{1/x*[ln(2-x)-ln(3-x)]}x->0+1/x*[ln(2-x)-ln(3-x)]->ln(2/3)/x-

lim(x,y)-(0,0)=根号下(xy+9)-3/xy

=lim(x,y)-(0,0)[(xy+9)-9]/[xy·(根号下(xy+9)+3)]=lim(x,y)-(0,0)(xy)/[xy·(根号下(xy+9)+3)]=lim(x,y)-(0,0)1/[

证明lim[(xy)/(x平方+y)],x趋于0,y趋于0时的极限不存在.

令y=x^3-x^2,带入原式,则当x,y趋于0时,原式趋于-1,再令y=x^2,带入原式,则当x,y趋于0时,原式趋于0,所以原式的极限不存在

证明 lim x-无穷大 cos2n/(n+1)=0 2.设数列xn有界 lim x-无穷 y

好难阿再答:对于任意的ε>0,取N=[1/ε]+1,则当n>N时|√(n²+1)/n-1|=|[√(n²+1)-n]/n|=|1/{n[√(n²+1)+n]}|≤1/n

lim(x->0)arctan1/x

lim(x->0)arctan1/xlim(x->0+)arctan(1/x)=π/2lim(x->0-)arctan(1/x)=-π/2∵左右极限均存在,但不相等∴lim(x->0)arctan1/

求极限lim(xy)^2/(x^2+y^2)^2,(x,y)趋于(0,0)

lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y

y=lim (x → 0) ( √1+xsinx - √cosx) / arcsin^2x.y=lim (n → ∞)

1.y=lim(x→0)(√1+xsinx-√cosx)/arcsin^2x=lim(x→0){[(sinx+cosx)/2√(1+xsinx)+sinx/2√cosx]}/[2arcsinx/√(1

lim(x→0y→1)(1+xe^y)^(2y+x/x)求极限

是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对

lim((x-y)/(x+y))求极限.(x,y)→(0,0)

该极限不存在,从X轴,Y轴,Y=X,Y=-X逼近原点时得到的结果不同(两个就够了)

lim sin(y×x^2+y^4)/(x^2+y^2) x,y都趋于0,

令y=kx则limsin(y×x^2+y^4)/(x^2+y^2)=limsin[kx^3+(kx)^4]/[(1+k^2)*x^2]分子用等价无穷小替换=lim[k+(k^4)*x]*(x^3)/[